4.6 Article

Green light augments far-red-light-induced shade response

期刊

PLANT GROWTH REGULATION
卷 77, 期 2, 页码 147-155

出版社

SPRINGER
DOI: 10.1007/s10725-015-0046-x

关键词

Shade avoidance; Green light; Phytochrome; Cryptochrome; Adaptation

资金

  1. National Science Foundation [IOS-0746756]

向作者/读者索取更多资源

Plants grown in shade exhibit changes in architecture and gene expression to best accommodate growth in photosynthetically challenging conditions. Adaptive changes in morphology include stem and petiole elongation and leaf hyponasty. These changes can be induced by low red to far-red ratio (R/Fr ratio) or by enrichment of green light relative to red and blue. In this report we demonstrate the relationship between far-red and green light in combination. Wild-type Arabidopsis thaliana plants were treated with a high and low R/Fr ratio background with or without supplemental green light. The addition of green light augmented the far-red response. Genetic analysis showed that the green effect operates independently of cry1, cry2, phot1, and phot2 receptors. Additive effects are not observed in phyA and phyB double mutants, but are observed in the phy signal transduction mutants pif4, pif5, pif7. The transcript levels of shade-associated genes (PIL1, ATHB2, and HFR1), are induced by low R/Fr ratio conditions and are reduced in the presence of green light, but not in phyAphyB mutants. The reduction in shade-related gene expression caused by supplementation of green light is inconsistent with the elongated petiole phenotype observed. These results suggest that phyA or phyB is required for the green light shade response, but they are not the main receptors because green light would increase the R/Fr ratio, leading to a non-shade phenotype.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据