4.3 Article

Postflight Aerothermal Analysis of Stardust Sample Return Capsule

期刊

JOURNAL OF SPACECRAFT AND ROCKETS
卷 47, 期 5, 页码 765-774

出版社

AMER INST AERONAUT ASTRONAUT
DOI: 10.2514/1.41514

关键词

-

向作者/读者索取更多资源

The reentry of the Stardust sample return capsule was captured by several optical instruments through an observation campaign aboard the NASA DC-8 airborne observatory. Flow environments obtained front computational fluid dynamics solutions are loosely coupled with material response modeling to predict the surface temperature and the observed continuum emission of Stardust throughout the reentry. The calculated surface temperatures are compared with the data from several spectral instruments onboard the airborne observatory, including the ECHELLE (echelle-based spectrograph for the crisp and high efficient detection of low light emission) camera and conventional spectrometer in Czerny-Turner configuration. The ECHELLE camera recorded spectral intensity at a period in the trajectory before peak heating. The graybody curves corresponding to the average and area-averaged surface temperatures predicted by the computational fluid dynamics and material response coupled simulation have excellent agreement with the recorded data at altitudes lower than 74 km. At these altitudes, the computational fluid dynamics and material response coupling agrees with the surface temperature to within 50 K. The computational fluid dynamics calculation without the material response modeling overestimates surface temperatures because it does not take into account such things as ablation. The overprediction of the computational fluid dynamics and material response simulated surface temperature early in the trajectory coincides with high-emission intensity lines corresponding to thermal paint products. The presence of paint on the heat shield could have contributed to the lower observed surface temperatures and could explain the overprediction by the simulated data, which does not account for the paint. The average surface temperatures resulting from the spectrometer in Czerny-Turner configuration telescope analysis agree to within less than 5% with the average surface temperatures predicted by the material response. This observation period included the point of peak heating. The calculated flux based on the surface temperature agrees well with the observed flux. Surface temperature is one of the critical parameters used in the design of thermal protection systems, because it is an indicator of material performance. The coupled computational fluid dynamics and material response approach employed in the present analysis increases confidence for future missions such as the crew exploration vehicle Orion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据