4.7 Article

Soft hollow particle damping identification in honeycomb structures

期刊

JOURNAL OF SOUND AND VIBRATION
卷 332, 期 3, 页码 536-544

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2012.09.024

关键词

-

资金

  1. French Midi-Pyrenees Region
  2. CNES

向作者/读者索取更多资源

The aim of this study is to provide a structural damping solution for space applications to enhance mission performance of honeycomb structures. Classical particle dampers are enclosures partially filled with small metallic or glass spheres, attached to a vibrating structure. The induced damping mechanism is mainly due to frictional losses and collision effects. This paper deals with replacing classical hard particles with soft hollow ones. This study is oriented toward experimental investigations and theoretical validation in order to distinguish dissipation phenomena. The experimental approach first relies on identifying the damping in small honeycomb samples filled with particles. Instead of dissipation by friction and impact, the elliptical shape of the measured hysteresis loops highlights that visco-elastic behavior is dominant with these specific soft particle dampers. Then, experimental and numerical validations are performed on aluminum honeycomb cantilever beams filled with particles. To take into account the effect of the particles, equivalent oscillators, based on the previous experimental damping identification, are added to a finite element model. These kinds of particle dampers are highly nonlinear as a function of excitation frequency and amplitude. It is shown that good damping efficiency is achieved across a large frequency range with low impact on structure stiffness. This paper suggests a convenient method to model the structural damping induced by soft hollow particles. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据