4.3 Article

Electrochemical characterization of Prussian blue type nickel hexacyanoferrate redox mediator for potential application as charge relay in dye-sensitized solar cells

期刊

JOURNAL OF SOLID STATE ELECTROCHEMISTRY
卷 15, 期 11-12, 页码 2545-2552

出版社

SPRINGER
DOI: 10.1007/s10008-011-1509-2

关键词

Metal hexacyanoferrate; Sol-gel processed deposits; Solid-state voltammetry charge propagation; Charge relay; Solar cell

资金

  1. Ministry of Science and Higher Education (Poland) [N204 031235]

向作者/读者索取更多资源

A polynuclear electronically/ionically (redox) conducting mixed-valent inorganic material such as nickel(II) hexacyanoferrate(II,III), NiHCF, was considered for potential application as a redox mediator (charge relay) in dye-sensitized solar cell (DSSC). The NiHCF redox reactions were found fast and reversible not only when the system was studied as thin film exposed to an aqueous supporting electrolyte but also as bulk material (pasted powder) in solid state, i.e., in the absence of contact with external liquid electrolyte phase. Usefulness of NiHCF material was diagnosed using conventional electroanalytical approaches, solid-state voltammetric methodology, as well as the dynamic electrochemical impedance spectroscopy technique that permitted monitoring of impedance spectra under potentiodynamic conditions. The material was utilized in a mixed-valent state, i.e., as a mixture of K(4)Ni(II)[Fe(II)(CN)(6)] and K(3)Ni(II)[Fe(III)(CN)(6)] in which iron(II) and iron(III) sites were at the 1:1 ratio. Under such conditions, dynamics of electron-hopping between mixed-valent iron sites was maximized. Our DSSC utilized cis-dithiocyanoatobis(4,4'-dicarboxylic acid-2,2'-bipyridine) ruthenium(II) dye (N3) adsorbed onto TiO(2) semiconductor and NiHCF as redox mediator. Although performance of our DSSC was not optimized in terms of the NiHCF film thickness and morphology, as well as lower photocurrents in comparison to those characteristic of the iodine/iodide based DSSC were obtained, our system yielded readily fairly high open-circuit photovoltages on the level of 800 mV. An important issue was that the formal potential of NiHCF was more positive relative to the potential of the iodide/triiodide couple while being still more negative than that equivalent to the ground state of the N3 dye. Thus, NiHCF mediator was able to regenerate the dye.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据