4.3 Article Proceedings Paper

Characteristics of methyl cellulose-NH4NO3-PEG electrolyte and application in fuel cells

期刊

JOURNAL OF SOLID STATE ELECTROCHEMISTRY
卷 14, 期 12, 页码 2153-2159

出版社

SPRINGER
DOI: 10.1007/s10008-010-1099-4

关键词

Methyl cellulose; Ammonium nitrate; Poly (ethylene glycol); Fuel cells

向作者/读者索取更多资源

We report the viability of methyl cellulose (MC) as a membrane in a polymer electrolyte membrane fuel cell (PEMFC). Methyl cellulose serves as the polymer host, ammonium nitrate (NH4NO3) as the doping salt and poly(ethylene glycol) (PEG) as plasticizer. Conductivity measurement was carried out using electrochemical impedance spectroscopy. The room temperature conductivity of pure MC film is is (3.08 +/- 0.63) x 10(-11)S cm(-1). The conductivity increased to (2.10 +/- 0.37) x 10(-6)S cm(-1) on addition of 25 wt.% NH4NO3. By adding 15 wt.% of PEG 200 to the highest conducting sample in the MC-NH4NO3 system, the conductivity was further raised by two orders of magnitude to (1.14 +/- 0.37) x 10(-4)S cm(-1). The highest conducting sample containing 15 wt.% PEG was used as membrane in PEMFC and was operated at room and elevated temperatures. From voltage-current density characteristics, the short circuit current density was 31.52 mA cm(-2) at room temperature (25 degrees C).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据