4.6 Article

Effects of ultrasound-related variables on sonochemically synthesized SAPO-34 nanoparticles

期刊

JOURNAL OF SOLID STATE CHEMISTRY
卷 201, 期 -, 页码 85-92

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jssc.2013.02.026

关键词

SAPO-34 molecular sieve; Nanoparticles; Sonochemical synthesis; Ultrasound-related variables

向作者/读者索取更多资源

The sonochemical method was developed to synthesize uniform SAPO-34 (silicoaluminophosphate molecular sieve) nanoparticles with high crystallinity using TEAOH as a structure-directing agent (SDA). The physicochemical characteristics of SAPO-34 products, i.e. crystallinity, particle size and shape can be controlled by varying the ultrasonic-related variable such as ultrasound power intensity, ultrasonic irradiation time, sonication temperature and geometrical characteristics of the ultrasonic device (e.g., sonotrode size). The products were characterized by XRD, SEM, TEM and BET. It is found that each of the parameters can play a significant role in acoustic cavitation, number of nuclei and the crystal growth. The experimental data establish that the crystallinity is related to ultrasonic intensity and diameter of the sonotrode, as well as sonication temperature. By increasing the ultrasonic power, duration and the sonication temperature, the mean sizes of particles decrease and the morphology of the products efficiently alters from spherical aggregates of cube type SAPO-34 particles to uniform spherical nanoparticles. (C) 2013 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据