4.6 Article

On the magnetic structure of DyNiO3

期刊

JOURNAL OF SOLID STATE CHEMISTRY
卷 182, 期 7, 页码 1982-1989

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jssc.2009.05.013

关键词

Metal-insulator transition; Charge disproportionation; Antiferromagnetic ordering; Nickel perovskite; Dysprosium nickelate

向作者/读者索取更多资源

The crystallographic structure of DyNiO3 has been investigated at T = 200, 100, and 2 K from high-resolution neutron powder diffraction (NPD) data. We show that the Structure is monoclinic, space group P2(1)/n, front the metal-insulator transition temperature at T-MI = 564 K down to 2 K. The Ni atoms occupy two different sites 2d (Ni1) and 2c (Ni2), whose valences, estimated from bond-valence consideration, are +2.43(1) and +3.44(1) at 2 K, respectively. This is interpreted as the result of a partial charge disproportionation of the type 2Ni(3+) -> Ni1((3-delta)+)+Ni2((3+delta)+), with delta approximate to 0.55 at T = 2 K. The magnetic structure has been studied from a NPD pattern at T = 2 K, well below the establishment of the antiferromagnetic (AFM) ordering at T-N = 154 K, as well as from sequential data collected from 16 K down to 2 K. The magnetic order is defined by the propagation vector k = (1/2,0,1/2). Two possible magnetic structures are compatible with the magnetic intensities. In the second solution both Ni sublattices participate in the magnetic order, as well as Dy since it corresponds to a total disproportionation of Ni3+ to Ni2+ and Ni4+. In the second Solution both Ni sublattices participate in the magnetic order. as well as Dy. The magnetic moments for Nil and Ni2 atoms at T = 2 K are 1.8 (2) and 0.8 (2) mu(B), respectively. These values are also compatible with a partial charge disproportionation. Dy3+ ions exhibit long-range magnetic ordering below 8 K An abrupt contraction of the unit-cell volume is observed at this temperature, due to a magnetoelastic coupling. The magnetic moment for Dy3+ at T = 2 K is 7.87 (6) mu(B). (C) 2009 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Physical

Thermal Expansion and Rattling Behavior of Gd-Filled Co4Sb12 Skutterudite Determined by High-Resolution Synchrotron X-ray Diffraction

Joao E. F. S. Rodrigues, Javier Gainza, Federico Serrano-Sanchez, Romualdo S. Silva Jr, Catherine Dejoie, Norbert M. Nemes, Oscar J. Dura, Jose L. Martinez, Jose Antonio Alonso

Summary: In this study, Gd-filled skutterudite GdxCo4Sb12 was prepared under high pressure and moderate temperature. The structural characterization revealed a filling fraction of x = 0.033(2) and an average bond length of 3.3499(3) angstrom. The lattice thermal expansion and Debye temperature were determined, showing that the application of the harmonic Debye theory underestimates the Debye temperature in skutterudites. The presence of Gd atom contributed to an ultra-low thermal conductivity and high thermoelectric efficiency.

MATERIALS (2023)

Article Materials Science, Multidisciplinary

EXAFS evidence for the spin-phonon coupling in the monoclinic PrNiO3 nickelate perovskite

J. E. Rodrigues, A. D. Rosa, J. Lopez-Sanchez, E. Sebastiani-Tofano, N. M. Nemes, J. L. Martinez, J. A. Alonso, O. Mathon

Summary: Understanding the electronic and structural changes in nickelates with a perovskite structure is crucial for their application as industrial devices. This study focuses on PrNiO3 and investigates the structural changes at a local level using X-ray absorption spectroscopy. The results reveal the presence of different phases and the coupling behavior between spin configuration and phonons. This approach provides new opportunities for similar studies in related materials.

JOURNAL OF MATERIALS CHEMISTRY C (2023)

Article Crystallography

Structural Evolution from Neutron Powder Diffraction of Nanostructured SnTe Obtained by Arc Melting

Javier Gainza, Federico Serrano-Sanchez, Joao E. F. S. Rodrigues, Oscar J. J. Dura, Brenda Fragoso, Mateus M. M. Ferrer, Norbert M. M. Nemes, Jose L. Martinez, Maria T. Fernandez-Diaz, Jose A. Alonso

Summary: Among chalcogenide thermoelectric materials, SnTe is a promising alternative to toxic PbTe for intermediate temperature applications. Pure polycrystalline SnTe was obtained by arc melting and its structural evolution was studied using temperature-dependent neutron powder diffraction (NPD) from room temperature up to 973 K. The sample exhibited a cubic crystal structure (space group Fm-3m) with pronounced displacement parameters for Te atoms. The structural analysis allowed the determination of Debye model parameters and provided insights into the Sn-Te chemical bonds. SEM images revealed nanostructuration in layers below 30 nm, contributing to a reduced thermal conductivity of 2.5 W/m center dot K at 800 K. The SPS treatment appeared to reduce Sn vacancies, resulting in decreased carrier density, increased Seebeck coefficient (up to 60 mu V K-1 at 700 K), and nearly doubled weighted mobility compared to the as-grown sample.

CRYSTALS (2023)

Article Crystallography

A novel crystallographic location of rattling atoms in filled EuxCo4Sb12 skutterudites prepared under high-pressure conditions

Joao Elias F. S. Rodrigues, Javier Gainza, Federico Serrano-Sanchez, Norbert M. Nemes, Oscar J. Dura, Jose Luis Martinez, Jose Antonio Alonso

Summary: A novel Eu-filled skutterudite has been synthesized under high-pressure conditions, and its structure was studied by high-resolution synchrotron X-ray diffraction. The thermal conductivity of this alloy was measured to be 0.82 W m(-1) K-1, lower than that of other filled skutterudites.

ZEITSCHRIFT FUR KRISTALLOGRAPHIE-CRYSTALLINE MATERIALS (2023)

Article Chemistry, Physical

Evidence for a Pressure-Induced Phase Transition in the Highly Distorted TlNiO3 Nickelate

Joao Elias Rodrigues, Angelika Rosa, Gaston Garbarino, Tetsuo Irifune, Jose Luis Martinez, Jose Antonio Alonso, Olivier Mathon

Summary: Rare-earth perovskite nickelates have unique electronic properties arising from the insulator-metal transition (IMT), but the mechanism of this transition remains debated. In this study, we investigated the mechanism of the pressure-induced phase transition in a rare Tl3+ nickelate. We used synchrotron XRD, XANES, and EXAFS techniques to probe the structural and electronic changes at different levels and demonstrated the application of XANES in tracking the pressure-induced transition.

CHEMISTRY OF MATERIALS (2023)

Article Engineering, Electrical & Electronic

Optical and magnetic properties of the La0.7RE0.1Ca0.2CrO3 (RE = Nd, Sm and Eu) orthochromite for optoelectronic and magnetic applications

Fatima Zohra Bouasla, Nabil Mahamdioua, Jose A. Alonso, Jose L. Martinez, Faiza Meriche, Cabir Terzioglu, Sevgi Polat Altintas

Summary: The orthochromites La0.7RE0.1Ca0.2CrO3 (RE = Nd, Sm, and Eu) with orthorhombic perovskite structure were studied for their structural, microstructural, optical, and magnetic properties. The results showed different bandgap energy values for Nd, Sm, and Eu doped samples, explaining the creation of localized states. The investigation also revealed the refractive index, Urbach energy, optical conductivity, and magnetic behavior of the samples.

JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS (2023)

Article Engineering, Electrical & Electronic

Investigation of hole-doping effect on structural, magnetic properties and magnetoresistance via Gd-site substitution by Pb in the layered manganite La0.1Gd0.2-xPbxCa1.2Sr0.6Mn2O7 (0 ≤ x ≤ 0.2)

Radjia Belguet, Nabil Mahamdioua, Faiza Meriche, Jose A. Alonso, Jose L. Martinez, Fatih Denbri, Sevgi Polat-Altintas, Cabir Terzioglu

Summary: Hole-doping double-layered manganites with the formula La1:0Gd(0.2-x)PbxCa1.2Sr0.6Mn2O7 (x = 0, 0.1, and 0.2) were prepared and characterized. The samples exhibited a tetragonal structure with an I4/mmm space group. Micrographs obtained using a scanning electron microscope showed a granular and porous structure with spherical grains. Fourier-transform infrared (FTIR) analysis confirmed the presence of characteristic vibrational bands. Electrical resistivity measurements revealed a decrease in resistivity with increasing Pb concentrations. The samples exhibited magnetic phase changes and displayed potential as temperature and magnetic sensors.

JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS (2023)

Article Multidisciplinary Sciences

Active and durable R2MnRuO7 pyrochlores with low Ru content for acidic oxygen evolution

Dmitry Galyamin, Jorge Torrero, Isabel Rodriguez, Manuel J. Kolb, Pilar Ferrer, Laura Pascual, Mohamed Abdel Salam, Diego Gianolio, Veronica Celorrio, Mohamed Mokhtar, Daniel Garcia Sanchez, Aldo Saul Gago, Kaspar Andreas Friedrich, Miguel A. Pena, Jose Antonio Alonso, Federico Calle-Vallejo, Maria Retuerto, Sergio Rojas

Summary: The study finds that low-ruthenium-content pyrochlores (R2MnRuO7, R = Y, Tb, and Dy) exhibit high activity and durability for the oxygen evolution reaction (OER) in acidic media. Among them, Y2MnRuO7 is the most stable catalyst, showing a voltage of 1.5 V at 10 mA cm(-2) for 40 h, or 5000 cycles up to 1.7 V. Experimental and computational results indicate that the excellent performance is attributed to the Ru sites embedded in RuMnOx surface layers. A water electrolyzer with Y2MnRuO7 and only 0.2 mgRu cm(-2) achieves a current density of 1 A cm(-2) at 1.75 V, remaining stable at 200 mA cm(-2) for over 24 h. These findings suggest further investigation on Ru catalysts with the goal of enhancing OER performance through a partial replacement of Ru with inexpensive cations. Ru-pyrochlores can serve as alternative anodes of PEM water electrolyzers, and their high performance is attributed to the Ru sites embedded in RuMnOx surface layers. The durability of a water electrolyzer with Y2MnRuO7 and only 0.2 mgRu cm(-2) has been successfully demonstrated.

NATURE COMMUNICATIONS (2023)

Article Chemistry, Physical

High Performance and Durable Anode with 10-Fold Reduction of Iridium Loading for Proton Exchange Membrane Water Electrolysis

Jorge Torrero, Tobias Morawietz, Daniel Garcia Sanchez, Dmitry Galyamin, Maria Retuerto, Vlad Martin-Diaconescu, Sergio Rojas, Jose Antonio Alonso, Aldo Saul Gago, Kaspar Andreas Friedrich

Summary: In this study, an anode with reduced iridium loading (0.2 mg) compared to commercial proton exchange membrane water electrolysis (PEMWE) (2-3 mg) was developed, demonstrating high performance and stability for over 1000 hours. An advanced catalyst based on an Ir mixed oxide (Sr2CaIrO6) was used, which has an unconventional structure that contributes to the reduction of iridium in the catalyst layer. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed the reconfiguration of the ionomer in the catalyst layer, resulting in almost full coverage of the catalytic layer with ionomers.

ADVANCED ENERGY MATERIALS (2023)

Article Chemistry, Inorganic & Nuclear

Antiferromagnetism and Structure of Sr1-xBaxFeO2F Oxyfluoride Perovskites

Crisanto A. Garcia-Ramos, Kiril Krezhov, Maria T. Fernandez-Diaz, Jose A. Alonso

Summary: By using X-ray and neutron powder diffraction, magnetization measurements, and Fe-57 Mossbauer spectroscopy, the structural and magnetic properties of Sr1-xBaxFeO2F were investigated. The results showed the random occupancy of Sr and Ba atoms at the A-cation site and the statistical distribution of O and F at the anionic sublattice. The magnetic structure was determined to be a G-type antiferromagnetic arrangement with Fe3+ moments oriented along the c axis.

MAGNETOCHEMISTRY (2023)

Article Chemistry, Multidisciplinary

Structural stability, optical and thermoelectric properties of the layered RbSn2Br5 halide synthesized using mechanochemistry

Carmen Abia, Carlos A. Lopez, Javier Gainza, Joao Elias F. S. Rodrigues, Brenda Fragoso, Mateus M. Ferrer, Norbert M. Nemes, Oscar J. Dura, Jose Luis Martinez, Maria Teresa Fernandez-Diaz, Jose Antonio Alonso

Summary: Rubidium di-tin pentabromide (RbSn2Br5) is a lead-free alternative material with high crystallinity that can be easily synthesized using a ball milling procedure. It has the potential to be used as a photovoltaic and optoelectronic material due to its improved stability and tolerance to ambient conditions. Experimental studies have shown that it has high electronic conductivity and Seebeck coefficient, as well as low thermal conductivity.

CRYSTENGCOMM (2023)

Article Chemistry, Physical

New superionic halide solid electrolytes enabled by aliovalent substitution in Li3-xY1-xHfxCl6 for all-solid-state lithium metal based batteries

Kaiyong Tuo, Chunwen Sun, C. A. Lopez, Maria Teresa Fernandez-Diaz, Jose Antonio Alonso

Summary: We report a new mixed-metal halide superionic conductor Li3-xY1-xHfxCl6 (0≤x<1) with high ionic conductivity up to 1.49 mS cm(-1) at room temperature. By using experimental characterization techniques and calculations, we investigate the influence of aliovalent substitution of Hf for Y on the local structural environment and lithium-ion transport in Li3YCl6. The presence of prevalent cation site disorder and defect structure as well as the synthetically optimized (Y/Hf)Cl-6 framework strongly enhances the transport properties.

JOURNAL OF MATERIALS CHEMISTRY A (2023)

Article Chemistry, Multidisciplinary

Novel high-temperature phase and crystal structure evolution of CsCuBr3 halide identified by neutron powder diffraction

Carmen Abia, Carlos A. Lopez, Javier Gainza, Joao Elias F. S. Rodrigues, Maria T. Fernandez-Diaz, Eva Cespedes, Jose Luis Martinez, Jose Antonio Alonso

Summary: The search for lead-free materials for optoelectronic applications is a current research focus in the field of environment-friendly energy transition. In this study, we investigated the substitution of toxic Pb2+ with Cu2+ in all-inorganic CsPbBr3 perovskite, and explored the CsCuBr3 halide with little previous research. A mechanically-synthesized CsCuBr3 specimen was obtained and characterized by calorimetric and structural analysis techniques. The results revealed a structural phase transition and the presence of magnetic coupling between Cu2+ spins.

CRYSTENGCOMM (2023)

Article Chemistry, Physical

Tunable inversion degree of MnIn2S4 thiospinels prepared by high-pressure synthesis, and its implication in the optical and magnetic properties

Javier Gainza, Orlando N. Guinazu, Eva Cespedes, Horacio Falcon, Jose Luis Martinez, Jose Antonio Alonso

Summary: In this study, MnIn2S4 polycrystalline samples with tunable degree of inversion were prepared using a rapid high-pressure synthetic method. The crystal structure refinement showed a positive correlation between the inversion degree and properties such as band gap and magnetic behavior.

JOURNAL OF ALLOYS AND COMPOUNDS (2023)

Article Materials Science, Multidisciplinary

Low-temperature terahertz spectroscopy of LaFeO3, PrFeO3, ErFeO3, and LuFeO3: Quasimagnon resonances and ground-state multiplet transitions

Nestor E. Massa, Leire del Campo, Vinh Ta Phuoc, Paula Kayser, Jose Antonio Alonso

Summary: This study investigates the zone center terahertz excitations of non-Jahn Teller distorted perovskites LaFeO3, PrFeO3, ErFeO3, and LuFeO3 under external magnetic fields. The results show that the low-energy excitations strongly depend on the size of the lanthanide ions and are affected by minute lattice displacements. This study provides insights into the mechanism and manipulation of magnetic states using phonons in these perovskites.

PHYSICAL REVIEW B (2023)

Article Chemistry, Inorganic & Nuclear

Structural Studies of Potassium Hexaiodoplatinate(IV) K2PtI6

Caleb J. Bennett, Helen E. A. Brand, Alexander K. L. Yuen, Maria K. Nicholas, Brendan J. Kennedy

Summary: The temperature dependence of the crystal structure of Potassium Hexaiodoplatinate(IV) between 80 and 500 K is studied. Different crystal structures are observed at different temperatures, including monoclinic, tetragonal, and cubic structures. Accurate determination of the structures of K2PtI6 is important for further theoretical and practical research.

JOURNAL OF SOLID STATE CHEMISTRY (2024)

Article Chemistry, Inorganic & Nuclear

Phosphate adsorption by amino acids intercalated calcium aluminum hydrotalcites: Kinetic, isothermal and mechanistic studies

Zhuo Zeng, Jiangfu Zheng, Xiaoming Li, Changzheng Fan, Rongying Zeng, Wenqing Tang

Summary: An efficient method for phosphate removal from wastewater is urgently needed due to the environmental issue caused by excessive phosphorus. In this study, calcium aluminum layered double hydroxides (CaAl-LDHs) and six amino acid intercalated calcium aluminum layered double hydroxides (CaAl-amino acid-LDHs) were prepared and compared for their phosphate adsorption performance. L-Aspartic acid intercalated calcium aluminum layered double hydroxides (CaAl-Asp-LDHs) exhibited the highest phosphate adsorption capacity and faster removal rate compared to CaAl-LDHs. The phosphate adsorption mechanism on CaAl-Asp-LDHs involved electrostatic attraction, hydrogen bonds, complexation, and ion exchange. This environmentally friendly material shows promising potential for efficient phosphate removal from aquatic environments.

JOURNAL OF SOLID STATE CHEMISTRY (2024)

Article Chemistry, Inorganic & Nuclear

Crystal structure and thermal behavior of three potential high-energy compounds of hydro-closo-borates with guanidinium

Rouzbeh Aghaei Hakkak, Thomas Schleid

Summary: The novel guanidinium hydro-closo-borates with [BnHn]2- (n = 10 and 12) anions were successfully synthesized via direct reaction. The crystal structures exhibit hydrogen bonding interactions and have the potential to facilitate H2 generation.

JOURNAL OF SOLID STATE CHEMISTRY (2024)

Article Chemistry, Inorganic & Nuclear

Synthesis of nano-crystal PVMo2W9@[Cu6O(TZI)3(H2O)6]4•nH2O for catalytically biodiesel preparation

Liqiang Ma, Pengpeng Wei, Jingfang Li, Liye Liang, Guangming Li

Summary: A novel catalyst, H4PVMo2W9O40@rht-MOF-1, was developed using a one-pot hydrothermal method. It exhibited high efficiency and reusability in esterification reactions.

JOURNAL OF SOLID STATE CHEMISTRY (2024)

Article Chemistry, Inorganic & Nuclear

Order-disorder transition and thermal behavior of paracelsian-type MGa2Ge2O8 (M = Sr, Ba) compounds

Liudmila A. Gorelova, Valentiva A. Yukhno, Maria G. Krzhizhanovskaya, Oleg S. Vereshchagin

Summary: Two new Ga-Ge disordered feldspar-related compounds were successfully synthesized using melt crystallization methods. Their stability and thermal expansion properties were studied under high-temperature conditions. The results showed that both compounds are stable within the studied temperature range and exhibit anisotropic thermal expansion.

JOURNAL OF SOLID STATE CHEMISTRY (2024)

Article Chemistry, Inorganic & Nuclear

Synthesis, structural study, and Na plus migration pathways simulation of the new phase Na3Al3(AsO4)4

Seifeddine Bdey, Nesrine Boussadoune, Francois Allard, Jacques Huot, Gabriel Antonius, Noura Fakhar Bourguiba, Pedro Nunez

Summary: The structure of a novel arsenate compound Na3Al3(AsO4)4 has been determined using X-ray diffraction. The crystal exhibits a monoclinic space group with suitable pathways for Na+ ion migration. The accuracy of the structural model was confirmed using various validation tools and density functional theory calculations.

JOURNAL OF SOLID STATE CHEMISTRY (2024)

Article Chemistry, Inorganic & Nuclear

Synthesis of new oxygen deficient triple layered perovskite oxides LaSr3Fe3-xCrxO10-δ (x=0.0, 0.2, and 0.5): Structural, optical, magnetic and photocatalytic properties

Amit Kumar Atri, Ujwal Manhas, Sumit Singh, Irfan Qadir, Shikha Sharma, Preteek Sharma, Devinder Singh

Summary: This study synthesizes new oxygen deficient triple layered Ruddlesden-Popper (RP) phases via sol-gel method and investigates the effects of Cr3+ doping on their structural, optical, magnetic, and photocatalytic properties. The experimental results demonstrate that Cr3+ doping alters the interactions and leads to excellent photocatalytic performance in some phases.

JOURNAL OF SOLID STATE CHEMISTRY (2024)

Article Chemistry, Inorganic & Nuclear

Downsizing FeNb11O29 anode material through ultrafast solid-state microwave-assisted synthesis for enhanced electrochemical performance

Dat Le Thanh, Amandine Guiet, Emmanuelle Suard, Romain Berthelot

Summary: In this study, FeNb11O29 powder samples were prepared using a microwave-assisted solid-state synthesis method for the first time. The samples obtained rapidly from submicrometric oxide precursors showed enhanced cycling performance, possibly due to the easier ionic diffusion occurring in the smaller particles.

JOURNAL OF SOLID STATE CHEMISTRY (2024)

Article Chemistry, Inorganic & Nuclear

Single-crystal structure and theoretical calculations of the second ternary tellurium borate Te2B2O7

Raimund Ziegler, Felix R. S. Purtscher, Thomas S. Hofer, Gunter Heymann, Hubert Huppertz

Summary: We have successfully synthesized a new tellurium borate crystal under high-pressure and high-temperature conditions. The crystal structure and theoretical calculations have been thoroughly discussed.

JOURNAL OF SOLID STATE CHEMISTRY (2024)

Article Chemistry, Inorganic & Nuclear

Two new multinary chalcogenides with (Se2)2- dimers: Ba8Hf2Se11(Se2) and Ba9Hf3Se14(Se2)

Subhendu Jana, Eric A. Gabilondo, Paul A. Maggard

Summary: This study reports the synthesis and characterization of two previously unknown multinary selenides, Ba8Hf2Se11(Se-2) and Ba9Hf3Se14(Se-2), which display unique structures and optoelectronic properties competitive with existing perovskite-type chalcogenides.

JOURNAL OF SOLID STATE CHEMISTRY (2024)

Article Chemistry, Inorganic & Nuclear

Research on mathematical algorithm to determine the chemical diffusion coefficient of hydrogen in CaZrO3 based proton conductor at high temperature

Fei Ruan, Chonggui Lei, Fenglong Zhang, Jinxiao Bao, Fen Zhou, Min Xie, Pengfei Xu, Jianquan Gao

Summary: Studying the diffusion properties of hydrogen is important for designing new proton conductors. In the past, the chemical diffusion coefficient of hydrogen in proton conductors was usually obtained through a manual calculation method, resulting in difficulty in controlling the calculation accuracy. To address this issue, a mathematical algorithm and C language computer program were developed to calculate the chemical diffusion coefficient based on Fick's second law and Romberg numerical integral. The algorithm showed high precision and powerful computing function, and has the potential to replace the manual calculation method in calculating the chemical diffusion coefficient for hydrogen in proton conductors.

JOURNAL OF SOLID STATE CHEMISTRY (2024)

Article Chemistry, Inorganic & Nuclear

Enhanced power factor and thermoelectric efficiency in Cu2Sn1- xYxSe3 system: A low-temperature study

Deepika Shanubhogue, Suraj Mangavati, Ashok Rao, Ru-Ting Tsao, Yung-Kang Kuo

Summary: In this study, the effect of Y doping at the Sn-site on the structural, electrical, and low-temperature thermoelectric properties of the Cu2SnSe3 system is investigated. Y-doped compounds Cu2Sn1-xYxSe3 show reduced electrical resistivity, enhanced power factor, and decreased thermal conductivity, resulting in higher ZT values.

JOURNAL OF SOLID STATE CHEMISTRY (2024)

Article Chemistry, Inorganic & Nuclear

Formamide-assisted synthesis of SnS2 nanosheets for high capacity and stable Li-ion battery

Wei Hong, Min Qing, Xun He, Lei Wang, Yu Pu, Qiyu Li, Zhimin He, Qin Dong, Rong Li, Xinglong Gou

Summary: This study developed a simple method to prepare SnS2 nanosheets and assembled them with MXene to form SnS2/MXene. The composite material exhibited abundant active sites, superior electron/ion transfer kinetics, and a unique 2D interlayer structure, resulting in high specific capacity, outstanding rate capability, and excellent cycling stability, with potential applications in LIBs.

JOURNAL OF SOLID STATE CHEMISTRY (2024)

Article Chemistry, Inorganic & Nuclear

Assembly of two trinuclear-cluster-based metal-organic frameworks: Structures and methanol electro-oxidation properties

Heng-Yu Ruan, Xue-Qian Wu, Tian-Yu Zhang, Yi Yuan, Le Wang, Ya-Pan Wu, Qing-Wen Han, Ruan Chi, Dong-Sheng Li

Summary: Two isostructural metalorganic frameworks (MOFs), CTGU-36-Co and CTGU-36-Ni, were synthesized, and CTGU-36-Ni demonstrated high activity as a molecular electrocatalyst for the methanol oxidation reaction.

JOURNAL OF SOLID STATE CHEMISTRY (2024)

Article Chemistry, Inorganic & Nuclear

Synthesis, structural, morphology, spectroscopic and optical study of new metal orthophosphate MII(Ga0.5Sb0.5)(PO4)2 (MII= Sr, Pb, Ba) compounds

Rachid Fakhreddine, Ali Ouasri, Abderrahim Aatiq

Summary: This paper reports the synthesis, structure, and spectroscopic studies of three novel metal orthophosphate salts. The structures of these compounds were refined using X-ray powder diffraction data. The infrared and Raman analysis revealed their symmetries and the UV-visible investigation determined their optical properties.

JOURNAL OF SOLID STATE CHEMISTRY (2024)