4.3 Article

Computational Modeling of Dynamic Response of a Latent Thermal Energy Storage System With Embedded Heat Pipes

出版社

ASME
DOI: 10.1115/1.4024745

关键词

-

资金

  1. U.S. Department of Energy SunShot Initiative [DE-FG36-08GO18146]

向作者/读者索取更多资源

Concentrating solar power plants (CSPs) are being explored as the leading source of renewable energy for future power generation. Storing sun's energy in the form of latent thermal energy of a phase change material (PCM) is desirable for use on demand including times when solar energy is unavailable. Considering a latent thermal energy storage (LTES) system incorporating heat pipes to enhance heat transfer between the heat transfer fluid (HTF) and the PCM, this paper explores the dynamic response of the LTES system subjected to repeated cycles of charging and discharging. A transient computational analysis of a shell-and-tube LTES embedded with two horizontal heat pipes is performed for repeated charging and discharging of the PCM to analyze the dynamic performance of the LTES, and the augmentation in the cyclic performance of the LTES embedded with heat pipes is investigated. A model low temperature phase change material system is considered in the present study, with the physical results being scalable to high temperature systems used in CSP plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据