4.5 Article

Role of linear viscoelasticity and rotational diffusivity on the collective behavior of active particles

期刊

JOURNAL OF RHEOLOGY
卷 57, 期 2, 页码 511-533

出版社

SOC RHEOLOGY
DOI: 10.1122/1.4778578

关键词

-

资金

  1. National Science Foundation [CBET-0954445]
  2. Div Of Chem, Bioeng, Env, & Transp Sys
  3. Directorate For Engineering [0954445] Funding Source: National Science Foundation

向作者/读者索取更多资源

A linear dynamics scheme has been used to quantify the impact of viscoelasticity of the suspending fluid on the collective structure of active particles, including rotational diffusivity. The linear stability examines the response near an isotropic state using a mean-field theory including far-field hydrodynamic interactions of the swimmers. The kinetic model uses three possible constitutive models, the Oldroyd-B, Maxwell, and generalized linear viscoelastic models inspired by fluids like saliva, mucus, and biological gels. The perturbation growth rate has been quantified in terms of wavenumber, translational diffusivity, rotational diffusivity, and material properties of the fluids. A key dimensionless group is the Deborah number, which compares the relaxation time of the fluid with the characteristic timescale of the instability. An advantage of the model formalism is the ability to calculate some properties analytically and others efficiently numerically in the presence of rotational diffusion. The different constitutive equations examined help illustrate when and why the dispersion relation can have a peak at a particular wavenumber. The fluid properties can also change the role of rotational diffusion; diffusion always stabilizes a system in a Newtonian fluid but can destabilize a system in a Maxwell fluid. (C) 2013 The Society of Rheology. [http://dx.doi.org/10.1122/1.4778578]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据