4.5 Article

Flow-enhanced nucleation of poly(1-butene): Model application to short-term and continuous shear and extensional flow

期刊

JOURNAL OF RHEOLOGY
卷 57, 期 6, 页码 1633-1653

出版社

JOURNAL RHEOLOGY AMER INST PHYSICS
DOI: 10.1122/1.4821609

关键词

-

资金

  1. Dutch Technology Foundation (STW) [08083]
  2. National Science Foundation (NSF) [DMR-0710662]

向作者/读者索取更多资源

A modeling framework for flow-enhanced nucleation of polymers is applied to a broad set of data from literature. Creation of flow-induced pointlike nuclei is coupled to chain stretch of the high-molecular weight tail of the material, calculated with a rheological constitutive model. As the flow-induced nuclei grow, the crystalline volume fraction increases and with it the viscosity of the material. This is accounted for by describing the material as a suspension of spheres in a viscoelastic matrix. Calculations are compared with a broad set of experimental data from literature on three grades of poly(1-butene). First, a parameter set is determined by fitting model results to flow-induced nucleation densities from short-term shear experiments. Next, this parameter set is used to validate the framework in continuous flow experiments in which viscosity is monitored during a constant flow rate. In this way, we demonstrate the approach is applicable to not only short-term shear but also continuous flow. It was observed in experiments that for continuous extensional flow, the viscosity shows an upturn at a constant strain, the value of which is independent of strain rate. We hypothesize that this upturn is related to long chains entering the chain stretch regime, as a result of the extension rate exceeding the inverse of the Rouse time of the longest chains. (C) 2013 The Society of Rheology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据