4.7 Article

iTRAQ-based proteomic identification of proteins involved in anti-angiogenic effects of Panduratin A on HUVECs

期刊

PHYTOMEDICINE
卷 22, 期 1, 页码 203-212

出版社

ELSEVIER GMBH, URBAN & FISCHER VERLAG
DOI: 10.1016/j.phymed.2014.11.016

关键词

iTRAQ; Proteomics; Panduratin A; Anti-angiogenesis

资金

  1. UM/MoHE High Impact Research Grant (HIR) [20001-E00002]

向作者/读者索取更多资源

Panciuratin A (PA), a cyclohexanyl chalcone from Boesenbergia rotundo (L.) Mansf, was shown to possess anti-angiogenic effects in our previous study. In the present study, the molecular targets and anti-angiogenic mechanisms of PA on human umbilical vein endothelial cells (HUVECs) were identified using an iTRAQ-based quantitative proteomics approach. A total of 263 proteins were found to be differentially regulated in response to treatment with PA. Ingenuity Pathway Analysis revealed that cellular growth and proliferation, protein synthesis, RNA post transcriptional modification, cellular assembly and organization and cell-to-cell signaling and interaction were the most significantly deregulated molecular and cellular functions in PA-treated HUVECs. PA inhibited the expressions of ARPC2 and CTNND1 that are associated with the formation of actin cytoskeleton, focal adhesion and cellular protrusions. In addition, PA down-regulated CD63, GRB-2, ICAM-2 and STAB-1 that are implicated in adhesion, migration and tube formation of endothelial cells. The differential expressions of three targets, namely, ARPC2, CDK4, and GRB-2 were validated by western blot analyses. Furthermore, PA inhibited G1-S progression, and resulted in G0/G1 at in HUVECs. The blockage in cell cycle progression was accompanied with the suppression of mTOR signaling. Treatment of HUVECs with PA resulted in decreased phosphorylation of ribosomal S6 and 4EBP1 proteins, the two downstream effectors of mTOR signaling. We further showed that PA is able to inhibit mTOR signaling induced by VEGF, a potent inducer of angiogenesis. Taken together, by integrating quantitative proteomic approach, we identified protein targets in which PA mediates its anti-angiogenic effects. The present study thus provides mechanistic evidence to the previously reported multifaceted anti-angiogenic effects of PA. Our study further identified mTOR signaling as an important target of PA, and therefore highlights the potential of PA for therapeutic intervention against angiogenesis-related pathogenesis, particularly, metastatic malignancy. (C) 2015 Elsevier GmbH. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据