4.6 Article

Thermal transport across graphene/SiC interface: effects of atomic bond and crystallinity of substrate

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00339-015-9066-7

关键词

-

资金

  1. National Natural Science Foundation of China [51206124, 51428603]
  2. SRF for ROCS, SEM

向作者/读者索取更多资源

The effect of interatomic interaction between graphene and 4H-SiC on their interfacial thermal transport is investigated by empirical molecular dynamics simulation. Two magnitudes of interfacial thermal conductance (ITC) improvement are observed for graphene/4H-SiC interface interacting through covalent bonds than through van der Waals interaction, which can be explained by the bond strength and the number of covalent bonds. Besides, it is found that the ITC of covalent graphene/C-terminated SiC is larger than that Si-terminated SiC, which is due to the stronger bond strength of C-C than that of C-Si. The effect of crystallinity of the substrate is studied, and the result shows that the ITC of graphene/a-SiC is higher than that of graphene/c-SiC. These results are crucial to the understanding of thermal transport across graphene interfaces, which are useful for thermal design in graphene-based transistors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据