4.7 Article

The proteomic response of Mycobacterium smegmatis to anti-tuberculosis drugs suggests targeted pathways

期刊

JOURNAL OF PROTEOME RESEARCH
卷 7, 期 3, 页码 855-865

出版社

AMER CHEMICAL SOC
DOI: 10.1021/pr0703066

关键词

Mycobacterium; mass spectrometry; tuberculosis; drug targets

向作者/读者索取更多资源

Mycobacterium smegmatis is a fast-growing model mycobacterial system that shares many features with the pathogenic Mycobacterium tuberculosis while allowing practical proteomics analysis. With the use of shotgun-style mass spectrometry, we provide a large-scale analysis of the M. smegmatis proteomic response to the anti-tuberculosis (TB) drugs isoniazid, ethambutol, and 5-chloropyrazinamide and elucidate the drugs' systematic effects on mycobacterial proteins. A total of 2550 proteins were identified with similar to 5% false-positive identification rate across 60 experiments, representing similar to 40% of the M. smegmatis proteome (similar to 6500 proteins). Protein differential expression levels were estimated from the shotgun proteomics data, and 485 proteins showing altered expression levels in response to drugs were identified at a 99% confidence level. Proteomic comparison of anti-TB drug responses shows that translation, cell cycle control, and energy production are down-regulated in all three drug treatments. In contrast, systems related to the drugs'targets, such as lipid, amino acid, and nucleotide metabolism, show specific protein expression changes associated with a particular drug treatment. We identify proteins involved in target pathways for the three drugs and infer putative targets for 5-chloropyrazinamide.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据