4.8 Article

High-efficiency dye-sensitized solar cells based on ultra-long single crystalline titanium dioxide nanowires

期刊

JOURNAL OF POWER SOURCES
卷 266, 期 -, 页码 440-447

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2014.05.022

关键词

Titanium dioxide nanowire membrane; Front-side illuminated photoanode; Photovoltaic performance; Dye-sensitized solar cell

资金

  1. National Natural Science Foundation of China [U1205112, 51002053]
  2. Chinese Ministry of Education [212206]
  3. Programs for Prominent Young Talents and New Century Excellent Talents in Fujian Province University
  4. Promotion Program for Yong and Middle-aged Teacher in Science and Technology Research of Huaqiao University [ZQN-YX102]

向作者/读者索取更多资源

High-efficiency dye-sensitized solar cells (DSCs) based on 3D networks of ultra-long single crystalline TiO2 nanowires are fabricated. By hydrothermal reaction of Ti foils in alkali aqueous solution, following ion exchange and high temperature sintering processes, the ultra-long single crystalline TiO2 nanowires can be prepared. Due to long enough of the TiO2 nanowires, they not only form 1D arrays perpendicular to Ti foils, but also extend to form 3D network structure on the top-side of the arrays. By optimizing the hydrothermal duration at 24 h, the formed TiO2 nanowire membrane based front-side illuminated photoanode shows enhanced dye-loading and light scattering abilities and excellent charge transport properties. So the DSC with this photoanode can attain to the highest power conversion efficiency about 8.05%. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Physical

Interfacial Defect Passivation Effect of N-Methyl-N-(thien-2-ylmethyl)amine for Highly Effective Perovskite Solar Cells

Juanmei Liu, Jihuai Wu, Guodong Li, Qi Chen, Xia Chen, Jialian Geng, Qiang Ouyang, Weihai Sun, Zhang Lan

Summary: This study presents a simple defect passivation strategy using N-methyl-N-(thien-2-ylmethyl)amine (NMTMA) as a passivator at the interface between the perovskite layer and the hole transport layer. The NMTMA effectively reduces trap-state density and nonradiative recombination, resulting in improved power conversion efficiency (PCE) and environmental stability for the perovskite solar cells.

ACS APPLIED ENERGY MATERIALS (2022)

Article Nanoscience & Nanotechnology

Polarized Molecule 4-(Aminomethyl) Benzonitrile Hydrochloride for Efficient and Stable Perovskite Solar Cells

Xia Chen, Jihuai Wu, Guodong Li, Yitian Du, Qi Chen, Chunyan Deng, Yuan Xu, Sijia Zhu, Fangfang Cai, Juanmei Liu, Yuelin Wei, Yunfang Huang

Summary: In this study, the introduction of AMBNCl as an additive to perovskite improves the quality of perovskite crystal growth, repairs defects, and enhances the efficiency and stability of the solar cells.

ACS APPLIED MATERIALS & INTERFACES (2022)

Article Electrochemistry

Tert-butyl peroxybenzoate-doped spiro-OMeTAD for perovskite solar cells with efficiency over 23%

Ying Wang, Jihuai Wu, Xiaobing Wang, Shibo Wang, Zhongliang Yan, Chunyan Wang, Fengxian Cao, Zhaohui Wu, Chaoran Ke, Zhang Lan, Weihai Sun

Summary: Perovskite solar cells have made great progress as a new generation photovoltaic technology. Researchers introduced an organic peroxide additive, TBPB, into a commonly used hole transport material, Spiro, to improve the performance and stability of the cells.

ELECTROCHIMICA ACTA (2022)

Article Chemistry, Physical

Performance Improvement of Planar Perovskite Solar Cells Using Lauric Acid as Interfacial Modifier

Fangfang Cai, Jianming Lin, Weichun Pan, Sijia Zhu, Wenjing Li, Yitian Du, Juanmei Liu, Minmin Yang, Jihuai Wu

Summary: Introducing lauric acid as a surface passivation agent in perovskite solar cells improves the stability and performance of the device by reducing carrier nonradiative combinations and enhancing the photovoltaic performance. The saturated alkyl chain of lauric acid forms a protective layer on the perovskite films, increasing their moisture resistance and environmental stability.

ACS APPLIED ENERGY MATERIALS (2022)

Article Chemistry, Physical

One-pot hydrothermal in situ growth of In4SnS8@MoS2@CNTs as efficient Pt-free counter electrodes for dye-sensitized solar cells

Mian Gao, Zhitao Shen, Gentian Yue, Chen Dong, Jihuai Wu, Yueyue Gao, Furui Tan

Summary: In this study, a novel synthesis method was developed to prepare efficient and economical non noble metal counter electrode (CE) electrocatalytic materials with good catalytic ability and stability for dye-sensitized solar cells (DSSCs). The resulting micro-nanostructured composite of CE showed high power conversion efficiency and a distinctive porous structure that facilitated fast charge transport.

JOURNAL OF ALLOYS AND COMPOUNDS (2023)

Article Energy & Fuels

Cage Polyamine Molecule Hexamethylenetetramine as Additives for Improving Performance of Perovskite Solar Cells

Jingxu Tian, Jihuai Wu, Yuhe Lin, Jialian Geng, Jialiang Shi, Wenhui Lin, Wenxuan Hao, Chaoran Ke, Jinhui Yang, Weihai Sun, Zhang Lan

Summary: As a solution to the challenges of improving efficiency and stability in perovskite solar cells (PSCs), a cage polyamine molecule hexamethylenetramine (HMTA) is incorporated into the tin oxide electron transport layer (ETL). The introduction of HMTA improves electron extraction ability and energy-level alignment of functional layers. It also reduces defects and enhances stability, resulting in a PSC with a high power conversion efficiency of 22.37%. This research demonstrates the use of cage polyamines as an effective method for improving the performance and stability of PSCs.

ENERGY TECHNOLOGY (2023)

Article Chemistry, Physical

Modulating Residual Lead Iodide via Functionalized Buried Interface for Efficient and Stable Perovskite Solar Cells

Chunyan Deng, Jihuai Wu, Yuqian Yang, Yitian Du, Ruoshui Li, Qi Chen, Yuan Xu, Weihai Sun, Zhang Lan, Peng Gao

Summary: By functionalizing the buried interface using DDSI2, the distribution and size of PbI2 clusters can be modulated, leading to improved performance of perovskite films. DDSI2 serves as a multifunctional modifier that optimizes the energy level of SnO2 and passivates buried interface defects. The hydrogen bonding and coordination between DDSI2 and perovskite reduce crystal growth rate and lattice stress, resulting in enhanced perovskite quality and modulated PbI2 distribution. The DDSI2-modified device exhibits a power conversion efficiency of 24.10% and a storage stability of 1800 h, demonstrating a unique strategy for the rational control of PbI2 in efficient and stable perovskite solar cells.

ACS ENERGY LETTERS (2023)

Review Materials Science, Multidisciplinary

Progress in photocapacitors: A review

Zeyu Song, Zhongkai Hao, Xu Zhang, Jihuai Wu

Summary: In recent years, there has been an increase in the development and research of photocapacitors. They have the potential to address the intermittent output problem of solar cells but their efficiency is much lower than that of photovoltaic devices, limiting their usability. As an intersection of photovoltaic devices and supercapacitors, the development of photocapacitors is still in its early stages and faces numerous challenges. This review provides an introduction to the classification of photocapacitors, outlines the development process, and points out the problems that need to be solved.

FUNCTIONAL MATERIALS LETTERS (2023)

Article Chemistry, Physical

Defect control for high-efficiency all-inorganic CsPbBr3 perovskite solar cells via hydrophobic polymer interface passivation

Anling Tong, Chenwei Zhu, Huiying Yan, Chunhong Zhang, Yinuo Jin, Yunjia Wu, Fengxian Cao, Jihuai Wu, Weihai Sun

Summary: Inorganic CsPbBr3-based perovskite solar cells have excellent humidity and thermal stability, but those without a hole transport layer suffer from serious carrier recombination. To solve this problem, a passivation layer of polymethyl methacrylate (PMMA) is used between the CsPbBr3 film and carbon electrode. This PMMA layer suppresses trap sites, facilitates faster carrier extraction and transportation, improves energy level alignment, and acts as a moisture protective layer. The modified device achieved a champion PCE of 9.60% with a high VOC of 1.58 V, and negligible PCE loss after 400 hours of aging.

JOURNAL OF ALLOYS AND COMPOUNDS (2023)

Article Materials Science, Multidisciplinary

NaHCO3-induced porous PbI2 enabling efficient and stable perovskite solar cells

Yitian Du, Ying Wang, Jihuai Wu, Qi Chen, Chunyan Deng, Ran Ji, Liuxue Sun, Lina Tan, Xia Chen, Yiming Xie, Yunfang Huang, Yana Vaynzof, Peng Gao, Weihai Sun, Zhang Lan

Summary: Sodium bicarbonate is used as an additive in perovskite solar cells to improve the formation of perovskite film and enhance the crystallinity and grain structure, resulting in improved device efficiency and stability.

INFOMAT (2023)

Article Nanoscience & Nanotechnology

Synergistic Effect of 2-(Trifluoromethyl) Benzimidazole on the Stability and Performance of Perovskite Solar Cells

Wenhui Lin, Jihuai Wu, Jingxu Tian, Yuhe Lin, Puzhao Yang, Yongheng Huang, Xiaoyuan Jiang, Lin Gao, Ying Wang, Weihai Sun, Zhang Lan, Miaoliang Huang

Summary: The introduction of multifunctional additive TFMBI into perovskite films effectively repairs surface defects, improves the performance of perovskite solar cells, and enhances their environmental stability.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Engineering, Environmental

Buried modification with tetramethylammonium chloride to enhance the performance of perovskite solar cells with n-i-p structure

Pengxu Chen, Weichun Pan, Sijia Zhu, Fengxian Cao, Anling Tong, Ruowei He, Zhang Lan, Weihai Sun, Jihuai Wu

Summary: In this study, defects in the SnO2 electron transport layer and perovskite layer were effectively passivated by introducing a multifunctional molecule TMACl. The presence of TMACl suppressed the defects in SnO2 and passivated the defects in PVK, resulting in improved device performance of perovskite solar cells. The devices based on TMACl-doped SnO2 and TMACl-modified SnO2 electron transport layers achieved higher efficiencies compared to the pristine device, and the TMACl-modified SnO2 maintained 88% of its original efficiency after 35 days of storage in a humidity-controlled chamber.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Chemistry, Inorganic & Nuclear

Enhanced performance of perovskite solar cells via a bilateral electron-donating passivator as a molecule bridge

Weichun Pan, Pengxu Chen, Sijia Zhu, Ruowei He, Qingshui Zheng, Fengxian Cao, Zhang Lan, Jihuai Wu, Weihai Sun, Yunlong Li

Summary: The introduction of 6-amino-1-hexanol (HAL) with bilateral electron-donating groups between SnO2 and perovskite (PVK) optimizes the buried interfacial properties and improves the PVK film quality in perovskite solar cells. HAL acts as a molecular bridge to effectively passivate surface defects of SnO2 and stabilize the [PbI6](4)- octahedra at the buried interface. The HAL-modified device exhibits significantly enhanced photovoltaic performance and improved stability after storage.

INORGANIC CHEMISTRY FRONTIERS (2023)

Article Chemistry, Multidisciplinary

4-Iodo-1H-imidazole dramatically improves the open-circuit voltages of perovskite solar cells to 1.2 V

Jinbiao Jia, Beibei Shi, Jia Dong, Zhe Jiang, Shuaibing Guo, Jihuai Wu, Bingqiang Cao

Summary: By introducing 4-iodo-1H-imidazole into the perovskite precursor, defects in the perovskite films can be prevented, resulting in a significant increase in open-circuit voltage and decreased nonradiative recombination. As a result, the device efficiency is increased by 20% compared to the control device.

NEW JOURNAL OF CHEMISTRY (2023)

Article Chemistry, Multidisciplinary

Poly(3-hexylthiophene)/perovskite Heterointerface by Spinodal Decomposition Enabling Efficient and Stable Perovskite Solar Cells

Yuqian Yang, Qiu Xiong, Jihuai Wu, Yongguang Tu, Tianxiao Sun, Guixiang Li, Xuping Liu, Xiaobing Wang, Yitian Du, Chunyan Deng, Lina Tan, Yuelin Wei, Yu Lin, Yunfang Huang, Miaoliang Huang, Weihai Sun, Leqing Fan, Yiming Xie, Jianming Lin, Zhang Lan, Valerio Stacchinii, Artem Musiienko, Qin Hu, Peng Gao, Antonio Abate, Mohammad Khaja Nazeeruddin

Summary: This study introduces a novel strategy of spinodal decomposition to create a poly(3-hexylthiophene)/perovskite (P3HT/PVK) heterointerface, effectively reducing energy and carrier losses in perovskite solar cells (PSCs). The P3HT/PVK heterointerface improves energy alignment, reducing energy loss at the interface, and the interpenetrating structure bridges a transport channel, decreasing carrier loss at the interface. This innovative approach achieves a remarkable power conversion efficiency of 24.53% for PSCs.

ADVANCED MATERIALS (2023)

Article Chemistry, Physical

Development of a tubular direct carbon solid oxide fuel cell stack based on lanthanum gallate electrolyte

Tianyu Chen, Zhibin Lu, Guangjin Zeng, Yongmin Xie, Jie Xiao, Zhifeng Xu

Summary: The study introduces a high-performance LSGM electrolyte-supported tubular DC-SOFC stack for portable applications, which shows great potential in developing into high-performing, efficient, and environmentally friendly portable power sources for distributed applications.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Construction of ultrastable and high-rate performance zinc anode with three-dimensional porous structure and Schottky contact

Wenbin Tong, Yili Chen, Shijie Gong, Shaokun Zhu, Jie Tian, Jiaqian Qin, Wenyong Chen, Shuanghong Chen

Summary: In this study, a three-dimensional porous NiO interface layer with enhanced anode dynamics is fabricated, forming a Schottky contact with the zinc substrate, allowing rapid and uniform zinc plating both inside and below the interface layer. The resulting NiO@Zn exhibits exceptional stability and high capacity retention.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Flexible low-temperature zinc ion supercapacitor based on gel electrolyte with α-MnO2@rGO electrode

Yafeng Bai, Kaidi Li, Liying Wang, Yang Gao, Xuesong Li, Xijia Yang, Wei Lu

Summary: In this study, a flexible zinc ion supercapacitor with gel electrolytes, porous alpha-MnO2@reduced graphene oxide cathode, and activated carbon/carbon cloth anode was developed. The device exhibits excellent electrochemical performance and stability, even at low temperatures, with a high cycle retention rate after 5000 cycles.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Examining the effects of silicon based additives on the long-term cycling capabilities of cylindrical cells

Anmol Jnawali, Matt D. R. Kok, Francesco Iacoviello, Daniel J. L. Brett, Paul R. Shearing

Summary: This article presents the results of a systematic study on the electrochemical performance and mechanical changes in two types of commercial batteries with different anode chemistry. The study reveals that the swelling of anode layers in batteries with silicon-based components causes deformations in the jelly roll structure, but the presence of a small percentage of silicon does not significantly impact the cycling performance of the cells within the relevant state-of-health range for electric vehicles (EVs). The research suggests that there is room for improving the cell capacities by increasing the silicon loading in composite anodes to meet the increasing demands on EVs.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Lithium disilicate as an alternative silicate battery material. A theoretical study

Yohandys A. Zulueta, My Phuong Pham-Ho, Minh Tho Nguyen

Summary: Advanced atomistic simulations were used to study ion transport in the Na- and K-doped lithium disilicate Li2Si2O5. The results showed that Na and K doping significantly enhanced Li ion diffusion and conduction in the material.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Novel BaO-decorated carbon-tolerant Ni-YSZ anode fabricated by an efficient phase inversion-impregnation approach

Zongying Han, Hui Dong, Yanru Yang, Hao Yu, Zhibin Yang

Summary: An efficient phase inversion-impregnation approach is developed to fabricate BaO-decorated Ni8 mol% YSZ anode-supported tubular solid oxide fuel cells (SOFCs) with anti-coking properties. BaO nanoislands are successfully introduced inside the Ni-YSZ anode, leading to higher peak power densities and improved stability in methane fuel. Density functional theory calculations suggest that the loading of BaO nanoislands facilitates carbon elimination by capturing and dissociating H2O molecules to generate OH.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Safe and stable Li-CO2 battery with metal-organic framework derived cathode composite and solid electrolyte

Suresh Mamidi, Dan Na, Baeksang Yoon, Henu Sharma, Anil D. Pathak, Kisor Kumar Sahu, Dae Young Lee, Cheul-Ro Lee, Inseok Seo

Summary: Li-CO2 batteries, which utilize CO2 and have a high energy density, are hindered in practical applications due to slow kinetics and safety hazards. This study introduces a stable and highly conductive ceramic-based solid electrolyte and a metal-organic framework catalyst to improve the safety and performance of Li-CO2 batteries. The optimized Li-CO2 cell shows outstanding specific capacity and cycle life, and the post-cycling analysis reveals the degradation mechanism of the electrodes. First-principles calculations based on density functional theory are also performed to understand the interactions between the catalyst and the host electrode. This research demonstrates the potential of MOF cathode catalyst for stable operation in Li-CO2 batteries.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Synergistic effect of platinum single atoms and nanoclusters for preferential oxidation of carbon monoxide in hydrogen-rich stream

Ganghua Xiang, Zhihuan Qiu, Huilong Fei, Zhigang Liu, Shuangfeng Yin, Yuen Wu

Summary: In this study, a CeFeOx-supported Pt single atoms and subnanometric clusters catalyst was developed, which exhibits enhanced catalytic activity and stability for the preferential oxidation of CO in H2-rich stream through synergistic effect.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Towards understanding the functional mechanism and synergistic effects of LiMn2O4-LiNi0.5Mn0.3Co0.2O2 blended positive electrodes for Lithium-ion batteries

Dimitrios Chatzogiannakis, Marcus Fehse, Maria Angeles Cabanero, Natalia Romano, Ashley Black, Damien Saurel, M. Rosa Palacin, Montse Casas-Cabanas

Summary: By coupling electrochemical testing to operando synchrotron based X-ray absorption and powder diffraction experiments, blended positive electrodes consisting of LiMn2O4 spinel (LMO) and layered LiNi0.5Mn0.3Co0.2O2 (NMC) were studied to understand their redox mechanism. It was found that blending NMC with LMO can enhance energy density at high rates, with the blend containing 25% LMO showing the best performance. Testing with a special electrochemical setup revealed that the effective current load on each blend component can vary significantly from the nominal rate and also changes with SoC. Operando studies allowed monitoring of the oxidation state evolution and changes in crystal structure, in line with the expected behavior of individual components considering their electrochemical current loads.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

We may be underestimating the power capabilities of lithium-ion capacitors

Chiara Cementon, Daniel Dewar, Thrinathreddy Ramireddy, Michael Brennan, Alexey M. Glushenkov

Summary: This Perspective discusses the specific power and power density of lithium-ion capacitors, highlighting the fact that their power characteristics are often underestimated. Through analysis, it is found that lithium-ion capacitors can usually achieve power densities superior to electrochemical supercapacitors, making them excellent alternatives to supercapacitors.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Highly concentrated solvation structure for reversible high-voltage lithium-ion battery at low temperature

Weihao Wang, Hao Yu, Li Ma, Youquan Zhang, Yuejiao Chen, Libao Chen, Guichao Kuang, Liangjun Zhou, Weifeng Wei

Summary: This study achieved an improved electrolyte with excellent low-temperature and high-voltage performance by regulating the Li+ solvation structure and highly concentrating it. The electrolyte exhibited outstanding oxidation potential and high ionic conductivity under low temperature and high voltage conditions, providing a promising approach for the practical application of high-voltage LIBs.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Evaluation of mitigation of capacity decay in vanadium redox flow batteries for cation- and anion-exchange membrane by validated mathematical modelling

Martin Bures, Dan Gotz, Jiri Charvat, Milos Svoboda, Jaromir Pocedic, Juraj Kosek, Alexandr Zubov, Petr Mazur

Summary: Vanadium redox flow battery is a promising energy storage solution with long-term durability, non-flammability, and high overall efficiency. Researchers have developed a mathematical model to simulate the charge-discharge cycling of the battery, and found that hydraulic connection of electrolyte tanks is the most effective strategy to reduce capacity losses, achieving a 69% reduction.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Operando analysis of the positive active mass of lead batteries by neutron diffraction

M. Rodriguez-Gomez, J. Campo, A. Orera, F. de La Fuente, J. Valenciano, H. Fricke, D. S. Hussey, Y. Chen, D. Yu, K. An, A. Larrea

Summary: In this study, we analysed the operando performance of industrial lead cells using neutron diffraction experiments. The experiments revealed the evolution of different phases in the positive electrode, showed significant inhomogeneity of phase distribution inside the electrode, and estimated the energy efficiency of the cells.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Double Conductive Ni-pads for a kW-class micro-tubular solid oxide fuel cell stack

Jiawei Liu, Chenpeng Wang, Yue Yao, Hao Ye, Yinglong Liu, Yingli Liu, Xiaoru Xu, Zhicong Chen, Huazheng Yang, Gang Wu, Libin Lei, Chao Wang, Bo Liang

Summary: The study focuses on utilizing double conductive Ni-pads as anode collectors in micro-tubular solid oxide fuel cells. The simulation results show excellent performance and stability of DCNPs, and also highlight the potential applications in various fields.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Ion transport regulation of polyimide separator for safe and durable Li-metal battery

Yang Wang, Kangjie Zhou, Lang Cui, Jiabing Mei, Shengnan Li, Le Li, Wei Fan, Longsheng Zhang, Tianxi Liu

Summary: This study presents a polyimide sandwiched separator (s-PIF) for improving the cycling stability of Li-metal batteries. The s-PIF separator exhibits superior mechanical property, electrolyte adsorption/retention and ion conductivity, and enables dendrite-free Li plating/stripping process.

JOURNAL OF POWER SOURCES (2024)