4.8 Article

Dense CoO/graphene stacks via self-assembly for improved reversibility as high performance anode in lithium ion batteries

期刊

JOURNAL OF POWER SOURCES
卷 272, 期 -, 页码 1037-1045

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2014.09.044

关键词

Graphene; Cobalt oxide; Self-assembly; Anode; Lithium ion batteries

资金

  1. Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korea Government (MSIP) [2013R1A2A2A04015089]
  2. Brain Korea 21 Plus (BK21+)
  3. National Research Foundation of Korea [2013R1A2A2A04015089] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Here, we propose a novel strategy to prepare dense stacks composed of alternating CoO and graphene layers for an anode in lithium ion batteries (LIBs), which contributes to enhanced stability and relatively large reversible capacity. This is accomplished by spontaneously pre-aligning negatively charged CoO-anchored graphene oxide (CG) and positively charged amine-functionalized graphene (GN) in an acidic medium, followed by thermal reduction. The performance of this product is contrasted with that of CG prepared under the identical conditions without the addition of GN, in which CoO nanoparticles are sandwiched between relatively loose and randomly oriented graphene stacks. For example, the composite delivers a capacity greater than 800 mAh g(-1) with a fading rate of 0.04 mAh g(-1) cycle(-1) during 1000 charge/discharge (C/D) cycles at 1.0 A g(-1), in contrast to ca. 400 mAh g(-1) and 0.24 mAh g(-1) cycle(-1) for thermally reduced CG without the addition of GN. The origin of the superior electrochemical performance in the dense stacks is ascribed to the enhanced reversibility of a conversion reaction, which in turn contributes to a persistent formation/dissolution of gel-like polymer films (i.e., stable pseudo-capacitance). Experimental evidences that substantiate the aforementioned behaviors (improved reversibility for both processes) are presented. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据