4.8 Article

Power management optimization of fuel cell/battery hybrid vehicles with experimental validation

期刊

JOURNAL OF POWER SOURCES
卷 252, 期 -, 页码 333-343

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2013.12.012

关键词

Fuel cell hybrid vehicle; Power management strategy; Optimization; Pontryagin's minimum principle; Fuzzy control; Experimental validation

资金

  1. Atomic Energy Commission of Syria (Syria)

向作者/读者索取更多资源

Fuel cell hybrid vehicles offer a high-efficiency and low-emission substitute for their internal combustion engine counterparts. The hybridization significantly improves the fuel economy of the vehicle; however, exploiting the hybridization requires a well-designed power management strategy that optimally shares the power demand between the power sources. This paper deals with the optimization of power management strategy of a fuel cell/battery hybrid vehicle, both off-line and in real-time. A new formulation of the optimization problem for the real-time strategy is presented. The new approach allows the optimization of the controller over a set of driving cycles at once, which improves the robustness of the designed strategy. The real-time optimization is applied to two forms of real-time controllers: a PI controller based on Pontryagin's Minimum Principle with three parameters and a fuzzy controller with ten parameters. The results show that the PI controller can outperform the fuzzy controller, even though it has fewer parameters. The real-time controllers are designed by simulation and then validated by experiment. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据