4.8 Article

High-performance LiMn2O4 with enwrapped segmented carbon nanotubes as cathode material for energy storage

期刊

JOURNAL OF POWER SOURCES
卷 235, 期 -, 页码 5-13

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2013.01.182

关键词

Spinel lithium manganese oxide; Carbon nanotube; Composite electrode material; Electrochemical performance; Rate capability; Aqueous electrolyte

资金

  1. Leading Academic Discipline Project of Shanghai Municipal Education Commission [J50102]

向作者/读者索取更多资源

This paper reports a spinel-type LiMn2O4/carbon nanotube (CNT) composite cathode material with high electrochemical performance for energy storage applications. The composite material is prepared by hydrothermal reaction between birnessite MnO2/multiwalled carbon nanotube (MWCNT) composite and LiOH solution, followed by heat treatment at 700 degrees C in air atmosphere, where the MnO2/MWCNT precursor is obtained by in situ redox reaction between KMnO4 solution and MWCNTs. The heat treated LiMn2O4/CNT composite material consists of well-crystallized spinel LiMn2O4 with small amount of enwrapped segmented carbon nanotubes, which is confirmed by X-ray diffraction and transmission electron microscopy. Electrochemical experimental results demonstrate that the LiMn2O4/CNT composite material heat treated for 8 h exhibits high specific capacity and excellent high-rate capability in 5 M LiNO3 aqueous electrolyte. The (LiMn2O4/CNT)/5 M LiNO3/activated carbon hybrid supercapacitor with this LiMn2O4-based composite material as the cathode presents excellent high-power capability and good charge/discharge cyclability. (c) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据