4.8 Article

Characteristics of a fluidized bed electrode for a direct carbon fuel cell anode

期刊

JOURNAL OF POWER SOURCES
卷 196, 期 6, 页码 3054-3059

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2010.11.130

关键词

Fluidized bed electrode; Direct carbon fuel cell; Anode; Activated carbon; Limiting current density

资金

  1. National Natural Science Fund Program of China [50776019]
  2. State Education Ministry of China [200802860038]
  3. Science & Technology Foundation of Southeast University of China [XJ0703267]

向作者/读者索取更多资源

The characteristics of a fluidized bed electrode applied as a direct carbon fuel cell anode, which has an inner diameter of 35 mm and height of 520 mm and employed bamboo-based activated carbon (BB-AC) as a feedstock, are vigorously studied under various experimental conditions. The optimal performance of the fluidized bed electrode direct carbon fuel cell (FEBDCFC) anode with the BB-AC as a fuel is obtained under the following conditions with a limiting current density of 95.9 mA cm(-2): reaction temperature, 923 K; N(2) flow rate, 385 ml min(-1); O(2)/CO(2) flow rate, 10/20 ml min(-1); nickel particle content, 30 g: and a cylindrically curved nickel plate as a current collector. Under the same optimal conditions, the limiting current density of the FEBDCFC anode with oak wood-based activated carbon and activated carbon fiber as the fuel is determined to be 94.5 and 88.4 mA cm(-2), which is lower than that determined for BB-AC as the fuel. Comparatively, the limiting current density for graphite, which is utilized as the carbon fuel for this fuel cell system, could not be unequivocally determined because no plateau of the limiting current density against the overpotential is observed. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Agricultural Engineering

Catalytic pyrolysis of black-liquor lignin by co-feeding with different plastics in a fluidized bed reactor

Huiyan Zhang, Rui Xiao, Jianlong Nie, Baosheng Jin, Shanshan Shao, Guomin Xiao

BIORESOURCE TECHNOLOGY (2015)

Article Energy & Fuels

Catalytic Pyrolysis of Biomass-Derived Compounds: Coking Kinetics and Formation Network

Shanshan Shao, Huiyan Zhang, Yun Wang, Rui Xiao, Lijun Heng, Dekui Shen

ENERGY & FUELS (2015)

Article Chemistry, Applied

Bio-oil heavy fraction for hydrogen production by iron-based oxygen carrier redox cycle

De-Wang Zeng, Rui Xiao, Shuai Zhang, Hui-Yan Zhang

FUEL PROCESSING TECHNOLOGY (2015)

Article Chemistry, Multidisciplinary

Catalytic cleavage of C-O linkages in benzyl phenyl ether assisted by microwave heating

Jun Hu, Dekui Shen, Shiliang Wu, Huiyan Zhang, Rui Xiao

RSC ADVANCES (2015)

Article Agricultural Engineering

Cellulose-lignin interactions during fast pyrolysis with different temperatures and mixing methods

Shiliang Wu, Dekui Shen, Jun Hu, Huiyan Zhang, Rui Xiao

BIOMASS & BIOENERGY (2016)

Article Energy & Fuels

High H2/CO Ratio Syngas Production from Chemical Looping Gasification of Sawdust in a Dual Fluidized Bed Gasifier

Jimin Zeng, Rui Xiao, Dewang Zeng, Yang Zhao, Huiyan Zhang, Dekui Shen

ENERGY & FUELS (2016)

Article Chemistry, Physical

Continuous hydrogen production from non-aqueous phase bio-oil via chemical looping redox cycles

De-Wang Zeng, Rui Xiao, Zhi-Cheng Huang, Ji-Min Zeng, Hui-Yan Zhang

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY (2016)

Article Chemistry, Analytical

Role of β-O-4 glycosidic bond on thermal degradation of cellulose

Shiliang Wu, Dekui Shen, Jun Hu, Huiyan Zhang, Rui Xiao

JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS (2016)

Article Energy & Fuels

Existence and release of sodium in Zhundong coal: effects of treating temperature and silica additives

Tao Yang, Xuebin Wang, Houzhang Tan, Bo Wei, Shuanghui Deng, Limeng Zhang, Huiyan Zhang

INTERNATIONAL JOURNAL OF OIL GAS AND COAL TECHNOLOGY (2016)

Article Agricultural Engineering

Catalytic conversion of biomass pyrolysis-derived compounds with chemical liquid deposition (CLD) modified ZSM-5

Huiyan Zhang, Mengmeng Luo, Rui Xiao, Shanshan Shao, Baosheng Jin, Guomin Xiao, Ming Zhao, Junyu Liang

BIORESOURCE TECHNOLOGY (2014)

Article Energy & Fuels

Characterization of Coke Deposition in the Catalytic Fast Pyrolysis of Biomass Derivates

Huiyan Zhang, Shanshan Shao, Rui Xiao, Dekui Shen, Jimin Zeng

ENERGY & FUELS (2014)

Article Energy & Fuels

Catalytic Co-pyrolysis of Biomass and Different Plastics (Polyethylene, Polypropylene, and Polystyrene) To Improve Hydrocarbon Yield in a Fluidized-Bed Reactor

Huiyan Zhang, Jianlong Nie, Rui Xiao, Baosheng Jin, Changqing Dong, Guomin Xiao

ENERGY & FUELS (2014)

Article Thermodynamics

Hydrogen production from bio-oil by chemical looping reforming

Huiyan Zhang, Rui Xiao, Min Song, Dekui Shen, Jian Liu

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY (2014)

Article Chemistry, Physical

Development of a tubular direct carbon solid oxide fuel cell stack based on lanthanum gallate electrolyte

Tianyu Chen, Zhibin Lu, Guangjin Zeng, Yongmin Xie, Jie Xiao, Zhifeng Xu

Summary: The study introduces a high-performance LSGM electrolyte-supported tubular DC-SOFC stack for portable applications, which shows great potential in developing into high-performing, efficient, and environmentally friendly portable power sources for distributed applications.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Construction of ultrastable and high-rate performance zinc anode with three-dimensional porous structure and Schottky contact

Wenbin Tong, Yili Chen, Shijie Gong, Shaokun Zhu, Jie Tian, Jiaqian Qin, Wenyong Chen, Shuanghong Chen

Summary: In this study, a three-dimensional porous NiO interface layer with enhanced anode dynamics is fabricated, forming a Schottky contact with the zinc substrate, allowing rapid and uniform zinc plating both inside and below the interface layer. The resulting NiO@Zn exhibits exceptional stability and high capacity retention.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Flexible low-temperature zinc ion supercapacitor based on gel electrolyte with α-MnO2@rGO electrode

Yafeng Bai, Kaidi Li, Liying Wang, Yang Gao, Xuesong Li, Xijia Yang, Wei Lu

Summary: In this study, a flexible zinc ion supercapacitor with gel electrolytes, porous alpha-MnO2@reduced graphene oxide cathode, and activated carbon/carbon cloth anode was developed. The device exhibits excellent electrochemical performance and stability, even at low temperatures, with a high cycle retention rate after 5000 cycles.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Examining the effects of silicon based additives on the long-term cycling capabilities of cylindrical cells

Anmol Jnawali, Matt D. R. Kok, Francesco Iacoviello, Daniel J. L. Brett, Paul R. Shearing

Summary: This article presents the results of a systematic study on the electrochemical performance and mechanical changes in two types of commercial batteries with different anode chemistry. The study reveals that the swelling of anode layers in batteries with silicon-based components causes deformations in the jelly roll structure, but the presence of a small percentage of silicon does not significantly impact the cycling performance of the cells within the relevant state-of-health range for electric vehicles (EVs). The research suggests that there is room for improving the cell capacities by increasing the silicon loading in composite anodes to meet the increasing demands on EVs.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Lithium disilicate as an alternative silicate battery material. A theoretical study

Yohandys A. Zulueta, My Phuong Pham-Ho, Minh Tho Nguyen

Summary: Advanced atomistic simulations were used to study ion transport in the Na- and K-doped lithium disilicate Li2Si2O5. The results showed that Na and K doping significantly enhanced Li ion diffusion and conduction in the material.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Novel BaO-decorated carbon-tolerant Ni-YSZ anode fabricated by an efficient phase inversion-impregnation approach

Zongying Han, Hui Dong, Yanru Yang, Hao Yu, Zhibin Yang

Summary: An efficient phase inversion-impregnation approach is developed to fabricate BaO-decorated Ni8 mol% YSZ anode-supported tubular solid oxide fuel cells (SOFCs) with anti-coking properties. BaO nanoislands are successfully introduced inside the Ni-YSZ anode, leading to higher peak power densities and improved stability in methane fuel. Density functional theory calculations suggest that the loading of BaO nanoislands facilitates carbon elimination by capturing and dissociating H2O molecules to generate OH.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Safe and stable Li-CO2 battery with metal-organic framework derived cathode composite and solid electrolyte

Suresh Mamidi, Dan Na, Baeksang Yoon, Henu Sharma, Anil D. Pathak, Kisor Kumar Sahu, Dae Young Lee, Cheul-Ro Lee, Inseok Seo

Summary: Li-CO2 batteries, which utilize CO2 and have a high energy density, are hindered in practical applications due to slow kinetics and safety hazards. This study introduces a stable and highly conductive ceramic-based solid electrolyte and a metal-organic framework catalyst to improve the safety and performance of Li-CO2 batteries. The optimized Li-CO2 cell shows outstanding specific capacity and cycle life, and the post-cycling analysis reveals the degradation mechanism of the electrodes. First-principles calculations based on density functional theory are also performed to understand the interactions between the catalyst and the host electrode. This research demonstrates the potential of MOF cathode catalyst for stable operation in Li-CO2 batteries.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Synergistic effect of platinum single atoms and nanoclusters for preferential oxidation of carbon monoxide in hydrogen-rich stream

Ganghua Xiang, Zhihuan Qiu, Huilong Fei, Zhigang Liu, Shuangfeng Yin, Yuen Wu

Summary: In this study, a CeFeOx-supported Pt single atoms and subnanometric clusters catalyst was developed, which exhibits enhanced catalytic activity and stability for the preferential oxidation of CO in H2-rich stream through synergistic effect.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Towards understanding the functional mechanism and synergistic effects of LiMn2O4-LiNi0.5Mn0.3Co0.2O2 blended positive electrodes for Lithium-ion batteries

Dimitrios Chatzogiannakis, Marcus Fehse, Maria Angeles Cabanero, Natalia Romano, Ashley Black, Damien Saurel, M. Rosa Palacin, Montse Casas-Cabanas

Summary: By coupling electrochemical testing to operando synchrotron based X-ray absorption and powder diffraction experiments, blended positive electrodes consisting of LiMn2O4 spinel (LMO) and layered LiNi0.5Mn0.3Co0.2O2 (NMC) were studied to understand their redox mechanism. It was found that blending NMC with LMO can enhance energy density at high rates, with the blend containing 25% LMO showing the best performance. Testing with a special electrochemical setup revealed that the effective current load on each blend component can vary significantly from the nominal rate and also changes with SoC. Operando studies allowed monitoring of the oxidation state evolution and changes in crystal structure, in line with the expected behavior of individual components considering their electrochemical current loads.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

We may be underestimating the power capabilities of lithium-ion capacitors

Chiara Cementon, Daniel Dewar, Thrinathreddy Ramireddy, Michael Brennan, Alexey M. Glushenkov

Summary: This Perspective discusses the specific power and power density of lithium-ion capacitors, highlighting the fact that their power characteristics are often underestimated. Through analysis, it is found that lithium-ion capacitors can usually achieve power densities superior to electrochemical supercapacitors, making them excellent alternatives to supercapacitors.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Highly concentrated solvation structure for reversible high-voltage lithium-ion battery at low temperature

Weihao Wang, Hao Yu, Li Ma, Youquan Zhang, Yuejiao Chen, Libao Chen, Guichao Kuang, Liangjun Zhou, Weifeng Wei

Summary: This study achieved an improved electrolyte with excellent low-temperature and high-voltage performance by regulating the Li+ solvation structure and highly concentrating it. The electrolyte exhibited outstanding oxidation potential and high ionic conductivity under low temperature and high voltage conditions, providing a promising approach for the practical application of high-voltage LIBs.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Evaluation of mitigation of capacity decay in vanadium redox flow batteries for cation- and anion-exchange membrane by validated mathematical modelling

Martin Bures, Dan Gotz, Jiri Charvat, Milos Svoboda, Jaromir Pocedic, Juraj Kosek, Alexandr Zubov, Petr Mazur

Summary: Vanadium redox flow battery is a promising energy storage solution with long-term durability, non-flammability, and high overall efficiency. Researchers have developed a mathematical model to simulate the charge-discharge cycling of the battery, and found that hydraulic connection of electrolyte tanks is the most effective strategy to reduce capacity losses, achieving a 69% reduction.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Operando analysis of the positive active mass of lead batteries by neutron diffraction

M. Rodriguez-Gomez, J. Campo, A. Orera, F. de La Fuente, J. Valenciano, H. Fricke, D. S. Hussey, Y. Chen, D. Yu, K. An, A. Larrea

Summary: In this study, we analysed the operando performance of industrial lead cells using neutron diffraction experiments. The experiments revealed the evolution of different phases in the positive electrode, showed significant inhomogeneity of phase distribution inside the electrode, and estimated the energy efficiency of the cells.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Double Conductive Ni-pads for a kW-class micro-tubular solid oxide fuel cell stack

Jiawei Liu, Chenpeng Wang, Yue Yao, Hao Ye, Yinglong Liu, Yingli Liu, Xiaoru Xu, Zhicong Chen, Huazheng Yang, Gang Wu, Libin Lei, Chao Wang, Bo Liang

Summary: The study focuses on utilizing double conductive Ni-pads as anode collectors in micro-tubular solid oxide fuel cells. The simulation results show excellent performance and stability of DCNPs, and also highlight the potential applications in various fields.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Ion transport regulation of polyimide separator for safe and durable Li-metal battery

Yang Wang, Kangjie Zhou, Lang Cui, Jiabing Mei, Shengnan Li, Le Li, Wei Fan, Longsheng Zhang, Tianxi Liu

Summary: This study presents a polyimide sandwiched separator (s-PIF) for improving the cycling stability of Li-metal batteries. The s-PIF separator exhibits superior mechanical property, electrolyte adsorption/retention and ion conductivity, and enables dendrite-free Li plating/stripping process.

JOURNAL OF POWER SOURCES (2024)