4.8 Article

Electrochemical properties of composite cathodes for La0.995Ca0.005NbO4-δ-based proton conducting fuel cells

期刊

JOURNAL OF POWER SOURCES
卷 196, 期 22, 页码 9220-9227

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2011.07.041

关键词

PC-SOFCs; Cathodes; Proton conductor; Cer-cer; Electrochemical impedance spectroscopy; LaNbO4; LSM

资金

  1. European Union [227560]
  2. Spanish Ministry for Science and Innovation [ENE2008-06302, 2008801093]

向作者/读者索取更多资源

The electrochemical properties of mixed-conducting ceramic-ceramic (cer-cer) composites for proton-conducting solid oxide fuel cells (PC-SOFCs) based on La0.995Ca0.005NbO4-delta (LCN) have been investigated. Different ratios of La0.8Sr0.2MnO3-delta/La0.995Ca0.005NbO4-delta (LSM/LCN) composites have been tested as cathodes in symmetrical cells based on La0.995Ca0.005NbO4-delta dense electrolytes while two different electrode sintering temperatures (1050 and 1150 degrees C) have been studied. Additionally, different LCN doped materials (Pr, Ce and Mn), which present a different conduction behavior, have been used as components in composite cathodes (mixtures of LSM/doped-LCN 50/50 vol.%). Electrochemical impedance spectroscopy analysis has been carried out in the temperature range 700-900 degrees C under moist (2.5%) atmospheres. Different oxygen partial pressures (pO(2)) have been employed in order to characterize the processes (surface reaction and charge transport) occurring at the composite electrode under oxidizing conditions. The main outcome of the present study is that the mixture of LSM (electronic phase) and LCN (protonic phase) enables to decrease substantially the electrode polarization resistance. This is ascribed to the increase in the three-phase-boundary length and therefore it allows electrochemical reactions to occur in a larger region (thickness) of the electrode. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Review Chemistry, Physical

A review on dual-phase oxygen transport membranes: from fundamentals to commercial deployment

Ragnar Kiebach, Steven Pirou, Lev Martinez Aguilera, Astri Bjornetun Haugen, Andreas Kaiser, Peter Vang Hendriksen, Maria Balaguer, Julio Garcia-Fayos, Jose Manuel Serra, Falk Schulze-Kueppers, Max Christie, Liudmila Fischer, Wilhelm Albert Meulenberg, Stefan Baumann

Summary: Oxygen transport membranes (OTMs) are a promising technology for oxygen production, offering lower costs and power consumption compared to cryogenic air separation or pressure swing adsorption. Dual-phase OTMs, composed of a stable ionic conductor and electronic conductor composite, have advantages over single-phase membranes in terms of chemical and mechanical stability. However, challenges remain in their large-scale employment.

JOURNAL OF MATERIALS CHEMISTRY A (2022)

Article Chemistry, Multidisciplinary

Intensification of catalytic CO2 methanation mediated by in-situ water removal through a high-temperature polymeric thin-film composite membrane

Sara Escorihuela, Cristina Cerda-Moreno, Fynn Weigelt, Sonia Remiro-Buenamanana, Sonia Escolastico, Alberto Tena, Sergey Shishatskiy, Torsten Brinkmann, Antonio Chica, Jose M. Serra

Summary: In this study, thin-film composite membranes (TFCM) were developed for in-situ water removal in a catalytic membrane reactor (CMR) for the Sabatier process, enabling higher catalytic stability and activity at elevated temperatures. The TFCM-mediated water extraction significantly improved CO2 conversion stability, with a notable increase in CO2 conversion rate and specific flux.

JOURNAL OF CO2 UTILIZATION (2022)

Article Multidisciplinary Sciences

Single-step hydrogen production from NH3, CH4, and biogas in stacked proton ceramic reactors

Daniel Clark, Harald Malerod-Fjeld, Michael Budd, Irene Yuste-Tirados, Dustin Beeaff, Simen Aamodt, Kevin Nguyen, Luca Ansaloni, Thijs Peters, Per K. Vestre, Dimitrios K. Pappas, Maria Valls, Sonia Remiro-Buenamanana, Truls Norby, Tor S. Bjorheim, Jose M. Serra, Christian Kjolseth

Summary: Proton ceramic reactors efficiently extract hydrogen from ammonia, methane, and biogas by combining endothermic reforming reactions with heat from electrochemical gas separation and compression. The successful scale-up to a 36-cell reactor stack demonstrates its potential in efficient hydrogen production, with complete conversion and high recovery rates of methane and ammonia even at high pressures.

SCIENCE (2022)

Article Engineering, Chemical

Chemical and mechanical stability of BCZY-GDC membranes for hydrogen separation

Elisa Mercadelli, Angela Gondolini, Matteo Ardit, Giuseppe Cruciani, Cesare Melandri, Sonia Escolastico, Jose M. Serra, Alessandra Sanson

Summary: This study investigated the hydrogen permeation of BCZY-GDC asymmetric membranes for 100 hours using wet 15% CO2 in Ar as the sweep gas. The results showed that the asymmetric membranes exhibited promising and stable hydrogen permeation flux values under the test conditions, and no structural or morphological changes were detected after the testing.

SEPARATION AND PURIFICATION TECHNOLOGY (2022)

Article Chemistry, Physical

Reversible electrodes based on B-site substituted Ba0.5Sr0.5Co0.8Fe0.2O3-δ for intermediate temperature solid-oxide cells

L. Navarrete, C. Hannahan, J. M. Serra

Summary: The effect of B-site substituted cations on the stability and electrochemical performance of Ba0.5Sr0.5Co0.8Fe0.2O3-delta perovskite was investigated. The presence of these substituted cations improved stability by preventing the formation of detrimental phases and reducing the formation of carbonates. Symmetrical cell testing showed that the Sc-substituted material mixed with GDC had the lowest polarization resistance and was chosen as the cathode for the full cell construction. The composite electrode exhibited encouraging power density and stability.

SOLID STATE IONICS (2022)

Article Materials Science, Multidisciplinary

Cracking during High-Temperature Deformation of a High-Strength Polycrystalline CoNi-Base Superalloy

Daniel Hausmann, Lisa Patricia Freund, Cecilia Solis, Sven Giese, Mathias Goeken, Ralph Gilles, Steffen Neumeier

Summary: The crack susceptibility during processing greatly affects the workability of wrought alloys. The study focused on the formability and cracking behavior of the CoNi-base superalloy CoWAlloy1 during hot rolling. It was found that the precipitation of gamma ' and the absence of recrystallization led to pronounced crack propagation and limited formability below the gamma ' solvus temperature.

METALS (2022)

Article Chemistry, Physical

Direct conversion of carbon dioxide into liquid fuels and chemicals by coupling green hydrogen at high temperature

Yubing Li, Lei Zeng, Ge Pang, Xueer Wei, Mengheng Wang, Kang Cheng, Jincan Kang, Jose M. Serra, Qinghong Zhang, Ye Wang

Summary: The direct hydrogenation of CO2 to gasoline and olefins using bifunctional iron-zeolite tandem catalysts operated at high temperatures (>300 degrees C) can efficiently utilize CO2 from industrial combustion and green H2 produced by solid oxide electrolytic cells (SOEC). The optimized FeMnK+H-ZSM-5 catalyst achieves a selectivity of 70% for C5-C11 range hydrocarbons and 17% for C2-C4 lower olefins at 320 degrees C. The conversion levels of CO2 and the aromatics contents are significantly enhanced at higher temperatures.

APPLIED CATALYSIS B-ENVIRONMENTAL (2023)

Article Engineering, Chemical

The role of ionic-electronic ratio in dual-phase catalytic layers for oxygen transport permeation membranes

Marwan Laqdiem, Julio Garcia-Fayos, Laura Almar, Maria Balaguer, Jose M. Serra

Summary: Oxygen transport membranes (OTMs) are attractive for decarbonization of the industry, but the oxygen permeation remains a limitation. Dual-phase composite materials have potential as membrane candidates due to their stability under CO2 atmospheres. The phase ratio in the catalytic layers affects the surface-exchange reactions and plays a crucial role in improving the oxygen flux.

JOURNAL OF MEMBRANE SCIENCE (2023)

Article Chemistry, Physical

Impact of lattice properties on the CO2 splitting kinetics of lanthanide-doped cerium oxides for chemical looping syngas production

Marwan Laqdiem, Alfonso J. Carrillo, Georgios Dimitrakopoulos, Maria Balaguer, Julio Garcia-Fayos, Ahmed F. Ghoniem, Jose M. Serra

Summary: This study investigates the application of cerium oxide (CeO2) particles in solar-driven thermochemical cycles and explores the effect of doping with other cations on oxygen-vacancy concentration and crystal lattice. The results show that doping can enhance fuel yield and redox oxygen-exchange kinetics.

SOLID STATE IONICS (2023)

Article Chemistry, Physical

Promotion of mixed protonic-electronic transport in La5.4WO11.1-& delta; membranes under H2S atmospheres

S. Escolastico, M. Balaguer, C. Solis, F. Toldra-Reig, S. Somacescu, U. Gerhards, A. Aguadero, K. Haas-Santo, R. Dittmeyer, J. M. Serra

Summary: Catalytic membrane reactors based on H2-separation membranes can enhance the performance of thermodynamically-limited reactions. This study characterizes the stability of La5.4WO11.1-& delta; protonic membrane material under H2S conditions and demonstrates the changes in crystalline structure and transport properties caused by the incorporation of sulfur.

JOURNAL OF MATERIALS CHEMISTRY A (2023)

Article Chemistry, Multidisciplinary

Oxide nanoparticle exsolution in Lu-doped (Ba,La)CoO3

Daria Balcerzak, Iga Szpunar, Ragnar Strandbakke, Sarmad W. Saeed, Calliope Bazioti, Aleksandra Mielewczyk-Gryn, Piotr Winiarz, Alfonso J. Carrillo, Maria Balaguer, Jose M. Serra, Maria Gazda, Sebastian Wachowski

Summary: This study investigated the Lu doping of Ba0.5La0.5CoO3 and its effect on the exsolution of oxide nanoparticles. The Lu doping caused phase segregation into the main BLCO-Lu phase and the secondary BCO-Lu phase. Exsolution of BCO-Lu nanoparticles on the main BLCO-Lu phase and vice versa was observed, indicating mutual exsolution of oxide NPs. Trace amount of the BaLuCo4O7 phase was also detected. The size and shape of the exsolved oxide NPs could be controlled by varying the annealing temperature. The findings provide potential for designing novel, more catalytically active materials for future electrochemical devices.

CRYSTENGCOMM (2023)

Article Chemistry, Inorganic & Nuclear

Energetics of formation and stability in high pressure steam of barium lanthanide cobaltite double perovskites

Aleksandra Mielewczyk-Gryn, Shuhao Yang, Maria Balaguer, Ragnar Strandbakke, Magnus H. Sorby, Iga Szpunar, Agnieszka Witkowska, Sebastian Wachowski, Jose M. Serra, Alexandra Navrotsky, Maria Gazda

Summary: This study investigates the formation energetics and stability of BaLnCo(2)O(6-delta) (Ln = La, Pr, Nd, and Gd) (BLnC) and BaGd1-xLaxCo2O6-delta, where x = 0.2, 0.5, and 0.7 (BGLC) double perovskite cobaltites under high water partial pressure. These materials have potential applications in electrochemical devices as positrodes. It is found that all investigated materials are thermodynamically stable relative to binary oxides and exhibit exothermic enthalpies of formation. The BGLC compounds show higher negative formation enthalpies compared to single-Ln compositions, but the BLnC series demonstrate better chemical stability under high steam pressures.

DALTON TRANSACTIONS (2023)

Article Chemistry, Multidisciplinary

Microwave-Driven Exsolution of Ni Nanoparticles in A-Site Deficient Perovskites

Andres Lopez-Garcia, Aitor Dominguez-Saldana, Alfonso J. Carrillo, Laura Navarrete, Maria I. Valls, Beatriz Garcia-Banos, Pedro J. Plaza-Gonzalez, Jose Manuel Catala-Civera, Jose Manuel Serra

Summary: Exsolution has become a promising method for generating metallic nanoparticles, offering better stability and robustness compared to conventional deposition methods. Alternative exsolution methods that do not rely on high-temperature reduction are being explored, such as utilizing electrochemical potentials or plasma technologies. In this study, a method based on pulsed microwave radiation is proposed for driving the exsolution of metallic nanoparticles, enabling high scalability with short exposure times and low temperatures.

ACS NANO (2023)

Article Chemistry, Multidisciplinary

Modulating redox properties of solid-state ion-conducting materials using microwave irradiation

J. M. Serra, M. Balaguer, J. Santos-Blasco, J. F. Borras-Morell, B. Garcia-Banos, P. Plaza-Gonzalez, D. Catalan-Martinez, F. Penaranda-Foix, A. Dominguez, L. Navarrete, J. M. Catala-Civera

Summary: This study investigates microwave-induced redox transformations on solid-state ion-conducting materials, and finds that reduction is triggered at a specific temperature leading to a significant increase in electric conductivity. The effectiveness of the redox process is influenced by material composition, gas environment, and microwave power intensity, with fine-grained materials showing amplified effects.

MATERIALS HORIZONS (2023)

Article Chemistry, Inorganic & Nuclear

Structural properties of mixed conductor Ba1-xGd1-yLax+yCo2O6-δ

Ragnar Strandbakke, David S. Wragg, Magnus H. Sorby, Matylda N. Guzik, Anette E. Gunnaes, Iga Szpunar, Sebastian Lech Wachowski, Maria Balaguer, Patricia A. Carvalho, Aleksandra Mielewczyk-Gryn, Jose M. Serra, Truls Norby

Summary: BGLC compositions with large compositional ranges of Ba, Gd, and La show significant compositional flexibility and the ability to tune functional properties, as well as anisotropic chemical expansion.

DALTON TRANSACTIONS (2022)

Article Chemistry, Physical

Development of a tubular direct carbon solid oxide fuel cell stack based on lanthanum gallate electrolyte

Tianyu Chen, Zhibin Lu, Guangjin Zeng, Yongmin Xie, Jie Xiao, Zhifeng Xu

Summary: The study introduces a high-performance LSGM electrolyte-supported tubular DC-SOFC stack for portable applications, which shows great potential in developing into high-performing, efficient, and environmentally friendly portable power sources for distributed applications.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Construction of ultrastable and high-rate performance zinc anode with three-dimensional porous structure and Schottky contact

Wenbin Tong, Yili Chen, Shijie Gong, Shaokun Zhu, Jie Tian, Jiaqian Qin, Wenyong Chen, Shuanghong Chen

Summary: In this study, a three-dimensional porous NiO interface layer with enhanced anode dynamics is fabricated, forming a Schottky contact with the zinc substrate, allowing rapid and uniform zinc plating both inside and below the interface layer. The resulting NiO@Zn exhibits exceptional stability and high capacity retention.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Flexible low-temperature zinc ion supercapacitor based on gel electrolyte with α-MnO2@rGO electrode

Yafeng Bai, Kaidi Li, Liying Wang, Yang Gao, Xuesong Li, Xijia Yang, Wei Lu

Summary: In this study, a flexible zinc ion supercapacitor with gel electrolytes, porous alpha-MnO2@reduced graphene oxide cathode, and activated carbon/carbon cloth anode was developed. The device exhibits excellent electrochemical performance and stability, even at low temperatures, with a high cycle retention rate after 5000 cycles.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Examining the effects of silicon based additives on the long-term cycling capabilities of cylindrical cells

Anmol Jnawali, Matt D. R. Kok, Francesco Iacoviello, Daniel J. L. Brett, Paul R. Shearing

Summary: This article presents the results of a systematic study on the electrochemical performance and mechanical changes in two types of commercial batteries with different anode chemistry. The study reveals that the swelling of anode layers in batteries with silicon-based components causes deformations in the jelly roll structure, but the presence of a small percentage of silicon does not significantly impact the cycling performance of the cells within the relevant state-of-health range for electric vehicles (EVs). The research suggests that there is room for improving the cell capacities by increasing the silicon loading in composite anodes to meet the increasing demands on EVs.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Lithium disilicate as an alternative silicate battery material. A theoretical study

Yohandys A. Zulueta, My Phuong Pham-Ho, Minh Tho Nguyen

Summary: Advanced atomistic simulations were used to study ion transport in the Na- and K-doped lithium disilicate Li2Si2O5. The results showed that Na and K doping significantly enhanced Li ion diffusion and conduction in the material.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Novel BaO-decorated carbon-tolerant Ni-YSZ anode fabricated by an efficient phase inversion-impregnation approach

Zongying Han, Hui Dong, Yanru Yang, Hao Yu, Zhibin Yang

Summary: An efficient phase inversion-impregnation approach is developed to fabricate BaO-decorated Ni8 mol% YSZ anode-supported tubular solid oxide fuel cells (SOFCs) with anti-coking properties. BaO nanoislands are successfully introduced inside the Ni-YSZ anode, leading to higher peak power densities and improved stability in methane fuel. Density functional theory calculations suggest that the loading of BaO nanoislands facilitates carbon elimination by capturing and dissociating H2O molecules to generate OH.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Safe and stable Li-CO2 battery with metal-organic framework derived cathode composite and solid electrolyte

Suresh Mamidi, Dan Na, Baeksang Yoon, Henu Sharma, Anil D. Pathak, Kisor Kumar Sahu, Dae Young Lee, Cheul-Ro Lee, Inseok Seo

Summary: Li-CO2 batteries, which utilize CO2 and have a high energy density, are hindered in practical applications due to slow kinetics and safety hazards. This study introduces a stable and highly conductive ceramic-based solid electrolyte and a metal-organic framework catalyst to improve the safety and performance of Li-CO2 batteries. The optimized Li-CO2 cell shows outstanding specific capacity and cycle life, and the post-cycling analysis reveals the degradation mechanism of the electrodes. First-principles calculations based on density functional theory are also performed to understand the interactions between the catalyst and the host electrode. This research demonstrates the potential of MOF cathode catalyst for stable operation in Li-CO2 batteries.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Synergistic effect of platinum single atoms and nanoclusters for preferential oxidation of carbon monoxide in hydrogen-rich stream

Ganghua Xiang, Zhihuan Qiu, Huilong Fei, Zhigang Liu, Shuangfeng Yin, Yuen Wu

Summary: In this study, a CeFeOx-supported Pt single atoms and subnanometric clusters catalyst was developed, which exhibits enhanced catalytic activity and stability for the preferential oxidation of CO in H2-rich stream through synergistic effect.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Towards understanding the functional mechanism and synergistic effects of LiMn2O4-LiNi0.5Mn0.3Co0.2O2 blended positive electrodes for Lithium-ion batteries

Dimitrios Chatzogiannakis, Marcus Fehse, Maria Angeles Cabanero, Natalia Romano, Ashley Black, Damien Saurel, M. Rosa Palacin, Montse Casas-Cabanas

Summary: By coupling electrochemical testing to operando synchrotron based X-ray absorption and powder diffraction experiments, blended positive electrodes consisting of LiMn2O4 spinel (LMO) and layered LiNi0.5Mn0.3Co0.2O2 (NMC) were studied to understand their redox mechanism. It was found that blending NMC with LMO can enhance energy density at high rates, with the blend containing 25% LMO showing the best performance. Testing with a special electrochemical setup revealed that the effective current load on each blend component can vary significantly from the nominal rate and also changes with SoC. Operando studies allowed monitoring of the oxidation state evolution and changes in crystal structure, in line with the expected behavior of individual components considering their electrochemical current loads.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

We may be underestimating the power capabilities of lithium-ion capacitors

Chiara Cementon, Daniel Dewar, Thrinathreddy Ramireddy, Michael Brennan, Alexey M. Glushenkov

Summary: This Perspective discusses the specific power and power density of lithium-ion capacitors, highlighting the fact that their power characteristics are often underestimated. Through analysis, it is found that lithium-ion capacitors can usually achieve power densities superior to electrochemical supercapacitors, making them excellent alternatives to supercapacitors.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Highly concentrated solvation structure for reversible high-voltage lithium-ion battery at low temperature

Weihao Wang, Hao Yu, Li Ma, Youquan Zhang, Yuejiao Chen, Libao Chen, Guichao Kuang, Liangjun Zhou, Weifeng Wei

Summary: This study achieved an improved electrolyte with excellent low-temperature and high-voltage performance by regulating the Li+ solvation structure and highly concentrating it. The electrolyte exhibited outstanding oxidation potential and high ionic conductivity under low temperature and high voltage conditions, providing a promising approach for the practical application of high-voltage LIBs.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Evaluation of mitigation of capacity decay in vanadium redox flow batteries for cation- and anion-exchange membrane by validated mathematical modelling

Martin Bures, Dan Gotz, Jiri Charvat, Milos Svoboda, Jaromir Pocedic, Juraj Kosek, Alexandr Zubov, Petr Mazur

Summary: Vanadium redox flow battery is a promising energy storage solution with long-term durability, non-flammability, and high overall efficiency. Researchers have developed a mathematical model to simulate the charge-discharge cycling of the battery, and found that hydraulic connection of electrolyte tanks is the most effective strategy to reduce capacity losses, achieving a 69% reduction.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Operando analysis of the positive active mass of lead batteries by neutron diffraction

M. Rodriguez-Gomez, J. Campo, A. Orera, F. de La Fuente, J. Valenciano, H. Fricke, D. S. Hussey, Y. Chen, D. Yu, K. An, A. Larrea

Summary: In this study, we analysed the operando performance of industrial lead cells using neutron diffraction experiments. The experiments revealed the evolution of different phases in the positive electrode, showed significant inhomogeneity of phase distribution inside the electrode, and estimated the energy efficiency of the cells.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Double Conductive Ni-pads for a kW-class micro-tubular solid oxide fuel cell stack

Jiawei Liu, Chenpeng Wang, Yue Yao, Hao Ye, Yinglong Liu, Yingli Liu, Xiaoru Xu, Zhicong Chen, Huazheng Yang, Gang Wu, Libin Lei, Chao Wang, Bo Liang

Summary: The study focuses on utilizing double conductive Ni-pads as anode collectors in micro-tubular solid oxide fuel cells. The simulation results show excellent performance and stability of DCNPs, and also highlight the potential applications in various fields.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Ion transport regulation of polyimide separator for safe and durable Li-metal battery

Yang Wang, Kangjie Zhou, Lang Cui, Jiabing Mei, Shengnan Li, Le Li, Wei Fan, Longsheng Zhang, Tianxi Liu

Summary: This study presents a polyimide sandwiched separator (s-PIF) for improving the cycling stability of Li-metal batteries. The s-PIF separator exhibits superior mechanical property, electrolyte adsorption/retention and ion conductivity, and enables dendrite-free Li plating/stripping process.

JOURNAL OF POWER SOURCES (2024)