4.8 Article

Cathode material influence on the power capability and utilizable capacity of next generation lithium-ion batteries

期刊

JOURNAL OF POWER SOURCES
卷 195, 期 12, 页码 3922-3927

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2009.11.143

关键词

Li-ion; Olivine cathode; Pulse power; Available capacity; Load history

向作者/读者索取更多资源

Lithium-ion cells (Li-ion) comprising lithium iron phosphate (LiFePO4) based cathode active material are a promising battery technology for future automotive applications and consumer electronics in terms of safety, cycle and calendar lifetime and cost. Those cells comprise flat open circuit voltage (OCV) characteristics and long-term load history dependent cell impedance. In this work the special electric characteristics of LiFePO4 based cells are elucidated, quantified and compared to Li-ion cells containing a competing cathode technology. Through pulse tests and partial cycle tests, performed with various olivine based cells, the cycling history dependency of the internal resistance and therefore on the power capability is shown. Hence, methods are illustrated to quantify this load history impact on the cells performance. Subsequently, methods to achieve a safe battery operation are elucidated. Furthermore strategies are given to obtain reliable information about the cells power capability, taking the mentioned properties into consideration. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Energy & Fuels

Electrical cell-to-cell variations within large-scale battery systems-A novel characterization and modeling approach

Alexander Reiter, Susanne Lehner, Oliver Bohlen, Dirk Uwe Sauer

Summary: In recent years, digital twins for large-scale and investment-intensive Li-ion battery systems in marine and stationary applications have gained increasing interest. Considering electrical cell-to-cell variations (CtCVs) within the battery model of such a digital twin offers advantages in model-based optimization and predictive maintenance. However, existing approaches for the characterization and modeling of CtCVs are not suitable for large-scale systems. This paper presents a holistic tool chain consisting of a non-destructive method for in-situ determination of resistance and capacity distributions, parameterization of a multi-cell battery model, and simplification through multivariate statistical analysis.

JOURNAL OF ENERGY STORAGE (2023)

Article Energy & Fuels

Potential analysis of current battery storage systems for providing fast grid services like synthetic inertia - Case study on a 6 MW system

Lucas Koltermann, Karl Konstantin Drenker, Mauricio Eduardo Celi Cortes, Kevin Jacque, Jan Figgener, Sebastian Zurmuehlen, Dirk Uwe Sauer

Summary: Large-scale battery energy storage systems (BESS) are already important in ancillary service markets worldwide, with batteries being suitable for applications with fast response times. However, the overall system response time of current BESS for future grid services has not been extensively studied. Measurements of a 6 MW BESS's inverters show that the response times can meet current standards even with older hardware, but hardware upgrades may be necessary for even faster future grid services.

JOURNAL OF ENERGY STORAGE (2023)

Correction Chemistry, Physical

Principles of the Battery Data Genome (vol 7, pg 238,2023)

Logan Ward, Susan Barbinec, Eric J. Dufek, David A. Howey, Venkatasubramanian Viswanathan, Muratahan Aykol, David A. C. Beck, Benjamin Blaiszik, Bor-Rong Chen, George Crabtree, Simon Clark, Valerio De Angelis, Philipp Dechent, Matthieu Dubarry, Erica E. Eggleton, Donal P. Finegan, Ian Foster, Chirranjeevi Balaji Gopal, Patrick K. Herring, Victor W. Hu, Noah H. Paulson, Yuliya Preger, Dirk Uwe-Sauer, Kandler Smith, Seth W. Snyder, Shashank Sripad, Tanvir R. Tanim, Linnette Teo

Article Chemistry, Physical

Machine learning-based fast charging of lithium-ion battery by perceiving and regulating internal microscopic states

Zhongbao Wei, Xiaofeng Yang, Yang Li, Hongwen He, Weihan Li, Dirk Uwe Sauer

Summary: This paper proposes a machine learning-based fast charging strategy for lithium-ion batteries. By using a reduced-order electrochemical-thermal model in the cloud, the soft actor-critic deep reinforcement learning algorithm is exploited to train the strategy. Hardware-in-Loop tests and experiments show that the proposed strategy effectively mitigates risks and improves the safety and longevity of batteries during fast charging. Compared to the commonly-used empirical protocol, the proposed approach extends the battery cycle life by about 75%.

ENERGY STORAGE MATERIALS (2023)

Article Chemistry, Physical

Modeling the volumetric expansion of the lithium-sulfur battery considering charge and discharge profiles

Daniel Martin Brieske, Alexander Warnecke, Dirk Uwe Sauer

Summary: As an alternative to lithium-ion batteries, lithium-sulfur batteries have shown great potential due to their higher energy density, improved safety, and lower material costs. In the next few years, it is possible to achieve an energy density of 500-600Wh kg-1. However, there are still challenges in commercializing and monitoring the condition of these batteries.

ENERGY STORAGE MATERIALS (2023)

Article Energy & Fuels

Metaheuristic for the integrated electric vehicle and crew scheduling problem

Hubert Maximilian Sistig, Dirk Uwe Sauer

Summary: Driven by global and local environmental concerns, public transport operators are transitioning to battery-powered electric buses. The total cost of ownership is the most crucial factor in choosing the electric bus concept. This paper analyzes the relationship between electrification and operational planning, focusing on vehicle scheduling and crew scheduling.

APPLIED ENERGY (2023)

Article Energy & Fuels

Standard Load Profiles for Electric Vehicle Charging Stations in Germany Based on Representative, Empirical Data

Christopher Hecht, Jan Figgener, Xiaohui Li, Lei Zhang, Dirk Uwe Sauer

Summary: Electric vehicles are becoming dominant in the global automobile market due to their environmental friendliness. This paper creates standard load profiles for different power levels, station sizes, and operating environments based on a large-scale empirical dataset. The study reveals that the average power per charge point increases with rated station power, especially for power above 100 kW, and decreases with the number of charge points per station for AC chargers. It also shows how the shape of the power curve largely depends on the station environment, with urban settings experiencing the highest average power of 0.71 kW on average, resulting in an annual energy sale of 6.2 MWh. These findings suggest that the rated grid capacity can be lower than the sum of the rated power of each charge point.

ENERGIES (2023)

Article Thermodynamics

Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview

Xiaohui Li, Zhenpo Wang, Lei Zhang, Fengchun Sun, Dingsong Cui, Christopher Hecht, Jan Figgener, Dirk Uwe Sauer

Summary: The increasing adoption of electric vehicles presents new challenges and opportunities for EV-grid integration. Predicting EV charging demand, optimizing charging infrastructure, and implementing smart charging scheduling schemes are crucial for efficient EV-grid interactions. This paper provides a comprehensive review on EV behavior modeling and its applications in EV-grid integration algorithm development, discussing various models to describe EV usage patterns, charging decision making processes, and response to smart charging schemes.

ENERGY (2023)

Article Energy & Fuels

Correlation of Health Indicators on Lithium-Ion Batteries

Philipp Dechent, Elias Barbers, Alexander Epp, Dominik Joest, Weihan Li, Dirk Uwe Sauer, Susanne Lehner

Summary: This paper presents a detailed correlation index of health indicators for lithium-ion batteries, which is important for cell selection and reducing cell-to-cell spread. The health indicators considered include impedance measurements at different pulse lengths, capacity values at different discharge procedures and checkups, weight, and initial voltage. The study is based on four different aging datasets, including variations in cell chemistry (NMC, LFP, NCA), cell type (round, prismatic), as well as size and designated application (consumer, automotive). A publicly available dataset is included for easy replication of the results.

ENERGY TECHNOLOGY (2023)

Article Electrochemistry

Understanding the Energy Potential of Lithium-Ion Batteries: Definition and Estimation of the State of Energy

Katharina Lilith Quade, Dominik Joest, Dirk Uwe Sauer, Weihan Li

Summary: An accurate estimation of the residual energy, State of Energy (SoE), is crucial for battery diagnostics in electric vehicles. Existing literature lacks in-depth analysis and comparison of SoE estimation methods. This work provides a comprehensive understanding of SoE by discussing various definitions and estimation approaches. Two physically feasible definitions are proposed, and the practical challenges of SoE estimation are critically analyzed. Experimental evaluation highlights the underestimation of residual energy by the State of Charge, emphasizing the importance of accurate SoE estimation.

BATTERIES & SUPERCAPS (2023)

Article Energy & Fuels

Customer-centric aging simulation for 48 V lithium-ion batteries in vehicle applications

Valentin Steininger, Peter Huesson, Katharina Rumpf, Dirk Uwe Sauer

Summary: This study aims to generate virtual customer driving data of mild-hybrid electric vehicles using automotive simulation models and stochastic customer driving profiles, in order to establish a simulation database for model training purposes and conduct lifetime simulations for new vehicles in the market. Mapping algorithms ensure a realistic representation of individual customer driving behavior. The results show significant differences in aging implications due to individual driving behavior and environmental conditions, with Asian customers exhibiting about 33% higher aging rate per driven kilometer compared to European customers during a 10-year simulation.

ETRANSPORTATION (2023)

Article Energy & Fuels

The Influence of Electrolyte Volume on Calendaric Aging of Lithium-Ion Batteries

Sebastian Klick, Gereon Stahl, Dirk Uwe Sauer

Summary: This paper investigates the influence of electrolyte volume on the degradation of lithium-ion batteries and finds that cells with higher amounts of electrolyte degrade substantially slower. Based on electrical tests, a theory explaining the volume-dependent rise of resistance and capacity decay is proposed.

ENERGY TECHNOLOGY (2023)

Article Electrochemistry

A Generic Approach to Simulating Temperature Distributions within Commercial Lithium-Ion Battery Systems

Alexander Reiter, Susanne Lehner, Oliver Bohlen, Dirk Uwe Sauer

Summary: Determining the average temperature and temperature distribution within a battery system is essential for system design and operation. This study introduces a generic thermal battery system model and validates its accuracy and computational efficiency.

BATTERIES-BASEL (2023)

Article Electrochemistry

Operational Validation of a Power Distribution Algorithm for a Modular Megawatt Battery Storage System

Lucas Koltermann, Kevin Jacque, Jan Figgener, Sebastian Zurmuehlen, Dirk Uwe Sauer

Summary: Large-scale battery storage systems have become popular for grid services, leading to increased competition in the market. An intelligent energy management system (EMS) is necessary for these systems, including a power distribution algorithm (SPDA) to control battery units. Field tests on a 6 MW/7.5 MWh system validated the SPDA's ability to exploit individual technological strengths and reduce cyclic aging by shifting energy throughput.

BATTERIES & SUPERCAPS (2023)

Article Electrochemistry

Extensive Experimental Thermal Runaway and Thermal Propagation Characterization of Large-Format Tabless Cylindrical Lithium-Ion Cells with Aluminum Housing and Laser Welded Endcaps

Hendrik Pegel, Stefan Schaeffler, Andreas Jossen, Dirk Uwe Sauer

Summary: This study extensively characterizes the thermal runaway and thermal propagation characteristics of large-format tabless cylindrical cells with aluminum housing and laser welded endcaps. The results provide insights into the challenges and safety measures associated with the use of aluminum housing in these cells.

JOURNAL OF THE ELECTROCHEMICAL SOCIETY (2023)

Article Chemistry, Physical

Development of a tubular direct carbon solid oxide fuel cell stack based on lanthanum gallate electrolyte

Tianyu Chen, Zhibin Lu, Guangjin Zeng, Yongmin Xie, Jie Xiao, Zhifeng Xu

Summary: The study introduces a high-performance LSGM electrolyte-supported tubular DC-SOFC stack for portable applications, which shows great potential in developing into high-performing, efficient, and environmentally friendly portable power sources for distributed applications.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Construction of ultrastable and high-rate performance zinc anode with three-dimensional porous structure and Schottky contact

Wenbin Tong, Yili Chen, Shijie Gong, Shaokun Zhu, Jie Tian, Jiaqian Qin, Wenyong Chen, Shuanghong Chen

Summary: In this study, a three-dimensional porous NiO interface layer with enhanced anode dynamics is fabricated, forming a Schottky contact with the zinc substrate, allowing rapid and uniform zinc plating both inside and below the interface layer. The resulting NiO@Zn exhibits exceptional stability and high capacity retention.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Flexible low-temperature zinc ion supercapacitor based on gel electrolyte with α-MnO2@rGO electrode

Yafeng Bai, Kaidi Li, Liying Wang, Yang Gao, Xuesong Li, Xijia Yang, Wei Lu

Summary: In this study, a flexible zinc ion supercapacitor with gel electrolytes, porous alpha-MnO2@reduced graphene oxide cathode, and activated carbon/carbon cloth anode was developed. The device exhibits excellent electrochemical performance and stability, even at low temperatures, with a high cycle retention rate after 5000 cycles.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Examining the effects of silicon based additives on the long-term cycling capabilities of cylindrical cells

Anmol Jnawali, Matt D. R. Kok, Francesco Iacoviello, Daniel J. L. Brett, Paul R. Shearing

Summary: This article presents the results of a systematic study on the electrochemical performance and mechanical changes in two types of commercial batteries with different anode chemistry. The study reveals that the swelling of anode layers in batteries with silicon-based components causes deformations in the jelly roll structure, but the presence of a small percentage of silicon does not significantly impact the cycling performance of the cells within the relevant state-of-health range for electric vehicles (EVs). The research suggests that there is room for improving the cell capacities by increasing the silicon loading in composite anodes to meet the increasing demands on EVs.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Lithium disilicate as an alternative silicate battery material. A theoretical study

Yohandys A. Zulueta, My Phuong Pham-Ho, Minh Tho Nguyen

Summary: Advanced atomistic simulations were used to study ion transport in the Na- and K-doped lithium disilicate Li2Si2O5. The results showed that Na and K doping significantly enhanced Li ion diffusion and conduction in the material.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Novel BaO-decorated carbon-tolerant Ni-YSZ anode fabricated by an efficient phase inversion-impregnation approach

Zongying Han, Hui Dong, Yanru Yang, Hao Yu, Zhibin Yang

Summary: An efficient phase inversion-impregnation approach is developed to fabricate BaO-decorated Ni8 mol% YSZ anode-supported tubular solid oxide fuel cells (SOFCs) with anti-coking properties. BaO nanoislands are successfully introduced inside the Ni-YSZ anode, leading to higher peak power densities and improved stability in methane fuel. Density functional theory calculations suggest that the loading of BaO nanoislands facilitates carbon elimination by capturing and dissociating H2O molecules to generate OH.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Safe and stable Li-CO2 battery with metal-organic framework derived cathode composite and solid electrolyte

Suresh Mamidi, Dan Na, Baeksang Yoon, Henu Sharma, Anil D. Pathak, Kisor Kumar Sahu, Dae Young Lee, Cheul-Ro Lee, Inseok Seo

Summary: Li-CO2 batteries, which utilize CO2 and have a high energy density, are hindered in practical applications due to slow kinetics and safety hazards. This study introduces a stable and highly conductive ceramic-based solid electrolyte and a metal-organic framework catalyst to improve the safety and performance of Li-CO2 batteries. The optimized Li-CO2 cell shows outstanding specific capacity and cycle life, and the post-cycling analysis reveals the degradation mechanism of the electrodes. First-principles calculations based on density functional theory are also performed to understand the interactions between the catalyst and the host electrode. This research demonstrates the potential of MOF cathode catalyst for stable operation in Li-CO2 batteries.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Synergistic effect of platinum single atoms and nanoclusters for preferential oxidation of carbon monoxide in hydrogen-rich stream

Ganghua Xiang, Zhihuan Qiu, Huilong Fei, Zhigang Liu, Shuangfeng Yin, Yuen Wu

Summary: In this study, a CeFeOx-supported Pt single atoms and subnanometric clusters catalyst was developed, which exhibits enhanced catalytic activity and stability for the preferential oxidation of CO in H2-rich stream through synergistic effect.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Towards understanding the functional mechanism and synergistic effects of LiMn2O4-LiNi0.5Mn0.3Co0.2O2 blended positive electrodes for Lithium-ion batteries

Dimitrios Chatzogiannakis, Marcus Fehse, Maria Angeles Cabanero, Natalia Romano, Ashley Black, Damien Saurel, M. Rosa Palacin, Montse Casas-Cabanas

Summary: By coupling electrochemical testing to operando synchrotron based X-ray absorption and powder diffraction experiments, blended positive electrodes consisting of LiMn2O4 spinel (LMO) and layered LiNi0.5Mn0.3Co0.2O2 (NMC) were studied to understand their redox mechanism. It was found that blending NMC with LMO can enhance energy density at high rates, with the blend containing 25% LMO showing the best performance. Testing with a special electrochemical setup revealed that the effective current load on each blend component can vary significantly from the nominal rate and also changes with SoC. Operando studies allowed monitoring of the oxidation state evolution and changes in crystal structure, in line with the expected behavior of individual components considering their electrochemical current loads.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

We may be underestimating the power capabilities of lithium-ion capacitors

Chiara Cementon, Daniel Dewar, Thrinathreddy Ramireddy, Michael Brennan, Alexey M. Glushenkov

Summary: This Perspective discusses the specific power and power density of lithium-ion capacitors, highlighting the fact that their power characteristics are often underestimated. Through analysis, it is found that lithium-ion capacitors can usually achieve power densities superior to electrochemical supercapacitors, making them excellent alternatives to supercapacitors.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Highly concentrated solvation structure for reversible high-voltage lithium-ion battery at low temperature

Weihao Wang, Hao Yu, Li Ma, Youquan Zhang, Yuejiao Chen, Libao Chen, Guichao Kuang, Liangjun Zhou, Weifeng Wei

Summary: This study achieved an improved electrolyte with excellent low-temperature and high-voltage performance by regulating the Li+ solvation structure and highly concentrating it. The electrolyte exhibited outstanding oxidation potential and high ionic conductivity under low temperature and high voltage conditions, providing a promising approach for the practical application of high-voltage LIBs.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Evaluation of mitigation of capacity decay in vanadium redox flow batteries for cation- and anion-exchange membrane by validated mathematical modelling

Martin Bures, Dan Gotz, Jiri Charvat, Milos Svoboda, Jaromir Pocedic, Juraj Kosek, Alexandr Zubov, Petr Mazur

Summary: Vanadium redox flow battery is a promising energy storage solution with long-term durability, non-flammability, and high overall efficiency. Researchers have developed a mathematical model to simulate the charge-discharge cycling of the battery, and found that hydraulic connection of electrolyte tanks is the most effective strategy to reduce capacity losses, achieving a 69% reduction.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Operando analysis of the positive active mass of lead batteries by neutron diffraction

M. Rodriguez-Gomez, J. Campo, A. Orera, F. de La Fuente, J. Valenciano, H. Fricke, D. S. Hussey, Y. Chen, D. Yu, K. An, A. Larrea

Summary: In this study, we analysed the operando performance of industrial lead cells using neutron diffraction experiments. The experiments revealed the evolution of different phases in the positive electrode, showed significant inhomogeneity of phase distribution inside the electrode, and estimated the energy efficiency of the cells.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Double Conductive Ni-pads for a kW-class micro-tubular solid oxide fuel cell stack

Jiawei Liu, Chenpeng Wang, Yue Yao, Hao Ye, Yinglong Liu, Yingli Liu, Xiaoru Xu, Zhicong Chen, Huazheng Yang, Gang Wu, Libin Lei, Chao Wang, Bo Liang

Summary: The study focuses on utilizing double conductive Ni-pads as anode collectors in micro-tubular solid oxide fuel cells. The simulation results show excellent performance and stability of DCNPs, and also highlight the potential applications in various fields.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Ion transport regulation of polyimide separator for safe and durable Li-metal battery

Yang Wang, Kangjie Zhou, Lang Cui, Jiabing Mei, Shengnan Li, Le Li, Wei Fan, Longsheng Zhang, Tianxi Liu

Summary: This study presents a polyimide sandwiched separator (s-PIF) for improving the cycling stability of Li-metal batteries. The s-PIF separator exhibits superior mechanical property, electrolyte adsorption/retention and ion conductivity, and enables dendrite-free Li plating/stripping process.

JOURNAL OF POWER SOURCES (2024)