4.8 Article

MnCo1.9Fe0.1O4 spinel protection layer on commercial ferritic steels for interconnect applications in solid oxide fuel cells

期刊

JOURNAL OF POWER SOURCES
卷 184, 期 1, 页码 172-179

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2008.05.081

关键词

solid oxide fuel cell; interconnect; oxidation; coating; resistivity

资金

  1. GENEDIS (Etortek) of the Basque Country Government

向作者/读者索取更多资源

In solid oxide fuel cells (SOC) for operating temperatures of 800 degrees C or below, the interconnection plates can be made from stainless steel. This is a big economic advantage, but energy losses can be caused by undesirable reactions between the alloys and other SOFC components. The use of coatings on interconnect stainless steels can reduce this degradation. A MnCo1.9Fe0.1O4(MCF) spinel not only significantly decreases the contact resistance between a La0.8Sr0.2FeO3 cathode and a stainless steel interconnect, but also acts as a diffusion barrier to prevent Cr outward migration through the coating. The level of improvement in electrical performance depends on the ferritic substrate composition. For Crofer22APU and F18TNb, with a Mn concentration of 0.4 and 0.12wt%, respectively, the reduction in contact resistance is significant. In comparison, limited improvement is achieved by application of MCF on IT-11 and E-Brite containing no Mn. No influence of the minor additions of Si or Al is observed on contact resistance. The MCF protection layer bonds well to the stainless steel substrates under thermal cycling, but the thermal expansion difference is too large between the La0.8Sr0.2Co0.75Fe0.25O3 contact layer used and Crofer22APU and IT-11. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据