4.6 Article

Renewable Resource-Based Biocomposites of Various Surface Treated Banana Fiber and Poly Lactic Acid: Characterization and Biodegradability

期刊

JOURNAL OF POLYMERS AND THE ENVIRONMENT
卷 20, 期 2, 页码 583-595

出版社

SPRINGER
DOI: 10.1007/s10924-012-0415-8

关键词

Biocomposite; Si69; PLA; Cold crystallization; Biodegradation; B. cepacia

向作者/读者索取更多资源

Eco-friendly completely biodegradable biocomposites have been fabricated using polylactic acid (PLA) and banana fiber (BF) employing melt blending technique followed by compression moulding. BF's were surface treated by NaOH and various silanes viz. 3-aminopropyltriethoxysilane and bis-(3-triethoxy silyl propyl) tetrasulfane (Si69) to improve the compatibility of the fibers within the matrix polymer. Characterization studies have been suggested that a better fiber matrix interaction because of the newly added functionalities on the BF surface as a result of chemical treatments. In comparison with the untreated BF biocomposite, an increase of 136% in tensile strength and 57% in impact strength has been observed for Si69 treated BF biocomposite. DSC thermograms of surface treated BF biocomposites revealed an increase in glass transition and melting transition due to the more restricted macromolecular movement as a result of better matrix fiber interaction. The thermal stability in the biocomposites also increased in case of biocomposite made up of BF treated with Si69. Viscoelastic measurements using DMA confirmed an increase of storage modulus and low damping values for the same biocomposite. Biodegradation studies of the biocomposites have been investigated in medium through morphological and weight loss studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据