4.1 Article

Mechanical Spectral Hole Burning in Polymer Solutions

期刊

出版社

WILEY
DOI: 10.1002/polb.21813

关键词

dynamic heterogeneity; dynamics; heterogeneity; hole burning; hole burning spectroscopy; length scale; MSHB; nonlinear; polymer rheology; polymer solution; polystyrene; viscoelasticity

资金

  1. American Chemical Society, Petroleum Research Fund [40615 AC7]
  2. National Science Foundation [DMR0307084, DMR 0804438]
  3. Texas Tech University
  4. Direct For Mathematical & Physical Scien
  5. Division Of Materials Research [0804438] Funding Source: National Science Foundation

向作者/读者索取更多资源

Mechanical Spectral Hole Burning (MSHB) was previously developed to investigate dynamic heterogeneity for polymeric materials, which exhibit relatively weak dielectric responses. In our previous work, MSHB was applied to a densely entangled block copolymer and successfully distinguishes the heterogeneous from the homogeneous states. Here, a series of polystyrene (PS) solutions was chosen to further investigate the effect of different types of heterogeneity on mechanical spectral hole burning. The three types of heterogeneity of interest include the entanglement spacing, the entanglement density (or number of entanglements per chain), and chain end density. The heterogeneity was varied by changing either solution concentration or molecular weight of the PS. Different types of dynamics from close to the Rouse regime into the terminal region were also examined. Our results are consistent with a heterogeneous dynamics over the time scales from close to Rouse regime into the rubbery plateau regime and the rubbery plateau-to-terminal flow transition regime. Terminal relaxation dynamics, on the other hand, were found to be homogeneous for the PS/diethyl phthalate solutions investigated. The results also indicate the hole properties are dominated by the type of dynamics rather than the length scale of heterogeneity. (C) 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2047-2062, 2009

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据