4.4 Article

First results of radiation-driven, layered deuterium-tritium implosions with a 3-shock adiabat-shaped drive at the National Ignition Facility

期刊

PHYSICS OF PLASMAS
卷 22, 期 8, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.4929912

关键词

-

资金

  1. U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]

向作者/读者索取更多资源

Radiation-driven, layered deuterium-tritium plastic capsule implosions were carried out using a new, 3-shock adiabat-shaped drive on the National Ignition Facility. The purpose of adiabat shaping is to use a stronger first shock, reducing hydrodynamic instability growth in the ablator. The shock can decay before reaching the deuterium-tritium fuel leaving it on a low adiabat and allowing higher fuel compression. The fuel areal density was improved by similar to 25% with this new drive compared to similar high-foot implosions, while neutron yield was improved by more than 4 times, compared to low-foot implosions driven at the same compression and implosion velocity. (C) 2015 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Physics, Fluids & Plasmas

Impact of hohlraum cooling on ignition metrics for inertial fusion implosions

John D. D. Lindl, Steven W. W. Haan, Otto L. L. Landen

Summary: This study extends the evaluation of ignition metrics to consider the effect of hohlraum cooling before peak implosion velocity in radiation-driven implosions. Firstly, the authors present an extension of the results for key hot spot stagnation quantities from a previous study, showing that modified analytic expressions match the experimental results for implosions with and without hohlraum cooling. Secondly, the authors compare the radiation hydrodynamics simulations with an analytic piston model to investigate the sensitivity of hohlraum cooling time and shell radius at peak velocity. Thirdly, they provide a set of ignition metrics that are applicable to a wide range of capsule designs with or without hohlraum cooling before peak implosion velocity.

PHYSICS OF PLASMAS (2023)

Review Instruments & Instrumentation

Imaging velocity interferometer system for any reflector (VISAR) diagnostics for high energy density sciences

Peter M. M. Celliers, Marius Millot

Summary: Two variants of optical imaging velocimetry, namely one-dimensional streaked line-imaging and two-dimensional time-resolved area-imaging VISAR, have become crucial tools in high energy density sciences. This article provides a brief review of their historical development and current implementations at major high energy density facilities worldwide. The versatility and power of imaging VISARs are demonstrated through their diverse applications in various fields and experiments.

REVIEW OF SCIENTIFIC INSTRUMENTS (2023)

Article Multidisciplinary Sciences

Observing the onset of pressure-driven K-shell delocalization

T. Doppner, M. Bethkenhagen, D. Kraus, P. Neumayer, D. A. Chapman, B. Bachmann, R. A. Baggott, M. P. Bohme, L. Divol, R. W. Falcone, L. B. Fletcher, O. L. Landen, M. J. MacDonald, A. M. Saunders, M. Schorner, P. A. Sterne, J. Vorberger, B. B. L. Witte, A. Yi, R. Redmer, S. H. Glenzer, D. O. Gericke

Summary: This article reports on an experiment that creates and diagnoses matter at pressures exceeding three gigabars. The experiment shows the presence of quantum-degenerate electrons and strongly reduced elastic scattering under extreme conditions.

NATURE (2023)

Article Physics, Multidisciplinary

Specific Heat of Electron Plasma Waves

J. R. Rygg, P. M. Celliers, G. W. Collins

Summary: Collective modes in a plasma, similar to phonons in a solid, impact a material's equation of state and transport properties. However, current quantum simulation techniques struggle to simulate these modes due to their long wavelengths. This study presents a Debye-type calculation of the specific heat of electron plasma waves, which reveals a previously overlooked energy reservoir that can explain compression differences between theoretical hydrogen models and shock experiments. The additional specific heat contribution improves our understanding of systems transitioning through the WDM regime and has implications for various applications.

PHYSICAL REVIEW LETTERS (2023)

Article Physics, Fluids & Plasmas

Control of low-mode drive asymmetry in an efficient long-pulse low gas-fill density Hohlraum

N. Izumi, T. Doppner, J. L. Milovich, O. L. Landen, D. A. Callahan, T. Chapman, D. E. Hinkel, C. V. Houldin Hatala, S. Khan, J. J. Kroll, B. J. MacGowan, E. Marin, D. Mariscal, M. Mauldin, M. Millot, J. D. Moody, K. Newman, M. Ratledge, J. S. Ross, E. Tubman, S. Vonhof, J. Wall

Summary: Through optimized pulse shaping, beam pointing, and temporal phasing, a symmetric implosion using a 14-ns low-adiabat drive pulse is possible in a low backscatter loss 0.45mg/cc He-filled Hohlraum. The ingress of the Hohlraum walls was mitigated by revisiting the adiabat-shaped design. Low-mode P-2 and P-4 drive asymmetry swings caused by the drift of the laser spots were essentially zeroed out by employing temporal beam phasing between cones of beams. The results also indicate an improved coupling efficiency and pave the way for revisiting low-adiabat, high convergence drives using CH ablators.

PHYSICS OF PLASMAS (2023)

Article Physics, Fluids & Plasmas

The colliding planar shocks platform to study warm dense matter at the National Ignition Facility

M. J. MacDonald, C. A. Di Stefano, T. Doppner, L. B. Fletcher, K. A. Flippo, D. Kalantar, E. C. Merritt, S. J. Ali, P. M. Celliers, R. Heredia, S. Vonhof, G. W. Collins, J. A. Gaffney, D. O. Gericke, S. H. Glenzer, D. Kraus, A. M. Saunders, D. W. Schmidt, C. T. Wilson, R. Zacharias, R. W. Falcone

Summary: We have developed an experimental platform at the National Ignition Facility that collision of planar shocks can produce warm dense matter with uniform conditions and high-precision equation of state measurements. The platform combines x-ray Thomson scattering and x-ray radiography to measure the density, electron temperature, and ionization state in warm dense matter. It aims to create a large volume of uniform plasma and minimize plasma condition distribution for improved precision.

PHYSICS OF PLASMAS (2023)

Article Physics, Fluids & Plasmas

Reaching a burning plasma and ignition using smaller capsules/Hohlraums, higher radiation temperatures, and thicker ablator/ice on the national ignition facility

K. L. Baker, C. A. Thomas, O. L. Landen, S. Haan, J. D. Lindl, D. T. Casey, C. Young, R. Nora, O. A. Hurricane, D. A. Callahan, O. Jones, L. Berzak Hopkins, S. Khan, B. K. Spears, S. Le Pape, N. B. Meezan, D. D. Ho, T. Doppner, D. Hinkel, E. L. Dewald, R. Tommasini, M. Hohenberger, C. Weber, D. Clark, D. T. Woods, J. L. Milovich, D. Strozzi, A. Kritcher, H. F. Robey, J. S. Ross, V. A. Smalyuk, P. A. Amendt, B. Bachmann, L. R. Benedetti, R. Bionta, P. M. Celliers, D. Fittinghoff, C. Goyon, R. Hatarik, N. Izumi, M. Gatu Johnson, G. Kyrala, T. Ma, K. Meaney, M. Millot, S. R. Nagel, P. K. Patel, D. Turnbull, P. L. Volegov, C. Yeamans, C. Wilde

Summary: In indirect-drive implosions, increasing laser peak power and radiation drive temperature can improve the core hot spot energy, pressure, and neutron yield. This improvement has been quantified and explained by simple analytic scalings validated by 1D simulations. Extrapolating from existing data, it is possible to achieve a yield of 2-3x10^17 (0.5-0.7 MJ) using only 1.8 MJ of laser energy in a low gas-fill 5.4 mm diameter Hohlraum at the 500 TW National Ignition Facility peak power limit.

PHYSICS OF PLASMAS (2023)

Article Physics, Fluids & Plasmas

Measuring and simulating ice-ablator mix in inertial confinement fusion

B. Bachmann, S. A. MacLaren, L. Masse, S. Bhandarkar, T. Briggs, D. Casey, L. Divol, T. Doeppner, D. Fittinghoff, M. Freeman, S. Haan, G. N. Hall, B. Hammel, E. Hartouni, N. Izumi, V. Geppert-Kleinrath, S. Khan, B. Kozioziemski, C. Krauland, O. Landen, D. Mariscal, E. Marley, K. Meaney, G. Mellos, A. Moore, A. Pak, P. Patel, M. Ratledge, N. Rice, M. Rubery, J. Salmonson, J. Sater, D. Schlossberg, M. Schneider, V. A. Smalyuk, C. Trosseille, P. Volegov, C. Weber, G. J. Williams, A. Wray

Summary: Fuel-ablator mix has a significant impact on the performance of inertial confinement fusion experiments. Studying this mix through experiments and simulations can improve our understanding of these experiments and lead to higher yields and increased robustness.

PHYSICS OF PLASMAS (2023)

Article Physics, Multidisciplinary

Dynamics and Power Balance of Near Unity Target Gain Inertial Confinement Fusion Implosions

A. Pak, L. Divol, D. T. Casey, S. F. Khan, A. L. Kritcher, J. E. Ralph, R. Tommasini, C. Trosseille, A. B. Zylstra, K. L. Baker, N. W. Birge, R. Bionta, B. Bachmann, E. L. Dewald, T. Doeppner, M. S. Freeman, D. N. Fittinghoff, V. Geppert-Kleinrath, H. Geppert-Kleinrath, K. D. Hahn, M. Hohenberger, J. Holder, S. Kerr, Y. Kim, B. Kozioziemski, K. Lamb, B. J. MacGowan, A. G. MacPhee, K. D. Meaney, A. S. Moore, D. J. Schlossberg, S. Stoupin, P. Volegov, C. Wilde, C. V. Young, O. L. Landen, R. P. J. Town

Summary: The quantification of various parameters in experiments on inertially confined fusion plasmas with target gains up to 0.72 reveals that increased rates of self-heating initially compensate for expansion power losses. As target gain rises, reacting plasmas reach peak fusion production at later times with increased size, temperature, mass, and lower emission weighted areal densities. Analytical models support these observations and provide insights into the evolution of these variables.

PHYSICAL REVIEW LETTERS (2023)

Article Physics, Fluids & Plasmas

First large capsule implosions in a frustum-shaped hohlraum

K. L. Baker, P. A. Amendt, J. S. Ross, V. A. Smalyuk, O. L. Landen, D. D. Ho, S. Khan, S. W. Haan, J. D. Lindl, D. Mariscal, J. L. Milovich, S. Maclaren, Y. Ping, D. J. Strozzi, R. M. Bionta, D. T. Casey, P. M. Celliers, D. N. Fittinghoff, H. Geppert-Kleinrath, V. Geppert-Kleinrath, K. D. Hahn, M. Gatu Johnson, Y. Kim, K. Meaney, M. Millot, R. Nora, P. L. Volegov, C. H. Wilde

Summary: This study reports on indirect-drive implosions driven by a dual conical frustum-shaped hohlraum called frustraum and the tuning campaigns leading up to two layered implosions. The results suggest that increasing the energy absorbed by the capsule at the expense of long coast times makes it more challenging to achieve ignition, and that further reducing coast time is warranted to improve the areal density and make ignition easier to achieve.

PHYSICS OF PLASMAS (2023)

Article Physics, Fluids & Plasmas

Reduced mixing in inertial confinement fusion with early-time interface acceleration

C. R. Weber, D. S. Clark, D. T. Casey, G. N. Hall, O. Jones, O. Landen, A. Pak, V. A. Smalyuk

Summary: In inertial confinement fusion (ICF) implosions, the interface between the cryogenic DT fuel and the ablator is unstable to shock acceleration and constant acceleration. The Rayleigh-Taylor instability (RT) can produce oscillatory motion that stabilizes against the Richtmyer-Meshkov instability (RM) if the constant acceleration is in the direction of lighter material. This characteristic is now being incorporated into newer designs to improve compression while minimizing ablator mixing into the fuel.

PHYSICAL REVIEW E (2023)

Correction Multidisciplinary Sciences

Rayleigh-Taylor instabilities in high-energy density settings on the National Ignition Facility (vol 116, pg 18233, 2018)

Bruce A. Remington, Park Hye-Sook, Daniel T. Casey, Robert M. Cavallo, Daniel S. Clark, Daniel H. Kalantar, Carolyn C. Kuranz, Aaron R. Miles, Sabrina R. Nagel, Kumar S. Raman, Christopher E. Wehrenberg, Vladimir A. Smalyuk

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2023)

Article Physics, Fluids & Plasmas

Alpha heating of indirect-drive layered implosions on the National Ignition Facility

K. L. Baker, S. MacLaren, O. Jones, B. K. Spears, P. K. Patel, R. Nora, L. Divol, O. L. Landen, G. J. Anderson, J. Gaffney, M. Kruse, O. A. Hurricane, D. A. Callahan, A. R. Christopherson, J. Salmonson, E. P. Hartouni, T. Doppner, E. Dewald, R. Tommasini, C. A. Thomas, C. Weber, D. Clark, D. T. Casey, M. Hohenberger, S. Khan, T. Woods, J. L. Milovich, R. L. Berger, D. Strozzi, A. Kritcher, B. Bachmann, R. Benedetti, R. Bionta, P. M. Celliers, D. Fittinghoff, R. Hatarik, N. Izumi, M. Gatu Johnson, G. Kyrala, T. Ma, K. Meaney, M. Millot, S. R. Nagel, A. Pak, P. L. Volegov, C. Yeamans, C. Wilde

Summary: In order to understand the proximity to ignition of current layered implosions in indirect-drive inertial confinement fusion, the level of alpha heating present needs to be measured. Experimental validation of current simulation-based methods of determining yield amplification was conducted through paired experiments, consisting of low-yield tritium-hydrogen-deuterium (THD) layered implosion and high-yield deuterium-tritium (DT) layered implosion. The THD capsules were designed to reduce DT neutron yield (alpha heating) while maintaining hydrodynamic similarity with the higher yield DT capsules. The measured yield ratio in these experiments allowed the determination of the alpha heating level in the DT layered implosions.

PHYSICAL REVIEW E (2023)

Article Physics, Fluids & Plasmas

Measurements of improved stability to achieve higher fuel compression in ICF

A. Do, D. T. Casey, D. S. Clark, B. Bachmann, K. L. Baker, T. Braun, T. M. Briggs, T. D. Chapman, P. M. Celliers, H. Chen, C. Choate, E. L. Dewald, L. Divol, G. Fathi, D. N. Fittinghoff, G. N. Hall, E. Hartouni, D. M. Holunga, S. F. Khan, A. L. Kritcher, O. L. Landen, A. G. Macphee, M. Millot, E. V. Marley, J. L. Milovich, A. Nikroo, A. E. Pak, D. J. Schlossberg, V. A. Smalyuk, M. Stadermann, D. J. Strozzi, R. Tommasini, C. R. Weber, B. N. Woodworth, D. K. Yanagisawa, N. W. Birge, C. R. Danly, M. Durocher, M. S. Freeman, H. Geppert-Kleinrath, V. Geppert-Kleinrath, Y. Kim, K. D. Meaney, C. H. Wilde, M. Gatu Johnson, A. Allen, M. Ratledge, C. Kong, T. Fehrenbach, C. Wild

Summary: This article examines the improvement of compression in high-density carbon-based ablators by reducing hydrodynamic growth of perturbations. Through experiments with different pulse shapes and ablators distribution, the study evaluates implosion symmetry, laser backscatter, stability, and compression. The research demonstrates improved compression has been achieved.

PHYSICS OF PLASMAS (2023)

暂无数据