4.4 Article

Epoxy/acrylonitrile-butadiene-styrene copolymer/clay ternary nanocomposite as impact toughened epoxy

期刊

JOURNAL OF POLYMER RESEARCH
卷 17, 期 2, 页码 191-201

出版社

SPRINGER
DOI: 10.1007/s10965-009-9305-8

关键词

Epoxy; Nanocomposite; Toughening; Clay; ABS

资金

  1. University of Tabriz

向作者/读者索取更多资源

Epoxy resins have low impact strength and poor resistance to crack propagation, which limit their many end use applications. The main objective of this work is to incorporate both acrylonitrile-butadiene-styrene copolymer (ABS) and organically modified clay (Cloisite 30B) into epoxy matrix with the aim of obtaining improved material with the impact strength higher than neat epoxy, epoxy/clay and epoxy/ABS hybrids without compromising the other desired mechanical properties such as tensile strength and modulus. Impact and tensile properties of binary and ternary systems were investigated. Tensile strength, elongation at break and impact strength were increased significantly with incorporation of only 4 phr ABS to epoxy matrix. For epoxy/clay nanocomposite with 2.5% clay content, tensile modulus and strength, and impact strength were improved compared to neat epoxy. With incorporation of 2.5% clay and 4 phr ABS into epoxy matrix, 133% increase was observed for impact strength. Ternary nanocomposite had impact and tensile strengths greater than values of the binary systems. Morphological properties of epoxy/ABS, epoxy/clay and epoxy/ABS/clay ternary nanocomposite were studied using atomic force microscopy (AFM) phase imaging, scanning electron microscopy (SEM) and wide angle X-ray diffraction (WAXD). New morphologies were achieved for epoxy/ABS and epoxy/ABS/clay hybrid materials. Exfoliated clay structure was obtained for epoxy/clay and epoxy/ABS/clay nanocomposite.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据