4.7 Article

Self-similar impulsive capillary waves on a ligament

期刊

PHYSICS OF FLUIDS
卷 27, 期 5, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4921321

关键词

-

向作者/读者索取更多资源

We study the short-time dynamics of a liquid ligament, held between two solid cylinders, when one is impulsively accelerated along its axis. A set of one-dimensional equations in the slender-slope approximation is used to describe the dynamics, including surface tension and viscous effects. An exact self-similar solution to the linearized equations is successfully compared to experiments made with millimetric ligaments. Another non-linear self-similar solution of the full set of equations is found numerically. Both the linear and non-linear solutions show that the axial depth at which the liquid is affected by the motion of the cylinder scales like root t, a consequence of the imposed radial uniformity of the axial velocity at the cylinder surface, and differs from t(2/3) known to prevail in surface-tension-driven flows. The non-linear solution presents the peculiar feature that there exists a maximum driving velocity U-star above which the solution disappears, a phenomenon probably related to the de-pinning of the contact line observed in experiments for large pulling velocities. (C) 2015 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据