4.7 Article

A phytocyanin-related early nodulin-like gene, BcBCP1, cloned from Boea crassifolia enhances osmotic tolerance in transgenic tobacco

期刊

JOURNAL OF PLANT PHYSIOLOGY
卷 168, 期 9, 页码 935-943

出版社

ELSEVIER GMBH, URBAN & FISCHER VERLAG
DOI: 10.1016/j.jplph.2010.09.019

关键词

Boea crassifolia; Early nodulin; Drought; Osmotic tolerance; Transgenic tobacco

资金

  1. National High Technology Research and Development Program of China [2007AA021403]
  2. National Natural Science Foundation of China [30770224]
  3. National Major Special Project of China [2008ZX08011-005]

向作者/读者索取更多资源

Using the mRNA differential display combined with 5' rapid amplification of cDNA ends (RACE) technique, an early nodulin-like protein gene (BcBCP1) (accession no. AY243047.1) was isolated from drought-treated Boea crassifolia leaves. The full-length cDNA of BcBCP1 consists of 844 bp nucleotides and has an open reading frame of 606 bp, encoding a putative polypeptide of 201 amino acids with a predicted molecular mass of 22 kDa and a pl of 5.13. The putative protein precursor contains four sequence domains, including a 27 amino acid hydrophobic N-terminal transit peptide, a 100 amino acid phytocyanin-homologous globular domain, a 51 amino acid hydroxyproline-rich cell wall structural protein domain, and a 22 amino acid hydrophobic extension domain. Sequence alignment defined the encoded protein as an early nodulin-like protein, and the absence of key ligands implies that it is unlikely to bind copper. BcBCP1 expression was strongly induced by dehydration, salinity and abscisic acid (ABA), slightly induced by moderate heat shock, and weakly inhibited by low temperature, methyl jasmonic acid (MeJA), and a low concentration of salicylic acid (SA). Overexpression of BcBCP1 in tobacco under the control of CaMV 35S promoter enhanced tolerance to osmotic stress, as indicated by the less impaired growth, less damaged membrane integrity and lower lipid peroxidation levels after osmotic stress. Transgenic tobacco lines overexpressing BcBCP1 showed higher photosynthetic rates, higher antioxidant enzyme activities and higher cytosyl ascorbic peroxidase transcription levels than non-transgenic tobacco plants, both under normal conditions and under osmotic stress. (C) 2011 Elsevier GmbH. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据