4.5 Article

Nutrient limitation of alpine plants: Implications from leaf N : P stoichiometry and leaf δ15N

期刊

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE
卷 177, 期 3, 页码 378-387

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/jpln.201200061

关键词

ammonium; plant functional groups; nitrate; nitrogen cycling; alpine meadow

资金

  1. National Basic Research Program of China [2010CB833500]
  2. German Research Foundation [KU-1184/14-2]
  3. National Natural Science Foundation of China [41071209, 41071329]
  4. Chinese Academy of Sciences

向作者/读者索取更多资源

Nitrogen (N) deposition can affect grassland ecosystems by altering biomass production, plant species composition and abundance. Therefore, a better understanding of the response of dominant plant species to N input is a prerequisite for accurate prediction of future changes and interactions within plant communities. We evaluated the response of seven dominant plant species on the Tibetan Plateau to N input at two levels: individual species and plant functional group. This was achieved by assessing leaf N : P stoichiometry, leaf delta N-15 and biomass production for the plant functional groups. Seven dominant plant species-three legumes, two forbs, one grass, one sedge-were analyzed for N, P, and delta N-15 2 years after fertilization with one of the three N forms: NO3-, NH4+, or NH4NO3 at four application rates (0, 7.5, 30, and 150 kg N ha(-1) y(-1)). On the basis of biomass production and leaf N : P ratios, we concluded that grasses were limited by available N or co-limited by available P. Unlike for grasses, leaf N : P and biomass production were not suitable indicators of N limitation for legumes and forbs in alpine meadows. The poor performance of legumes under high N fertilization was mainly due to strong competition with grasses. The total above-ground biomass was not increased by N fertilization. However, species composition shifted to more productive grasses. A significant negative correlation between leaf N : P and leaf delta N-15 indicated that the two forbs Gentiana straminea and Saussurea superba switched from N deficiency to P limitation (e. g., N excess) due to N fertilization. These findings imply that alpine meadows will be more dominated by grasses under increased atmospheric N deposition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据