4.6 Article

Growth Promotion and Flowering Induction in Mango (Mangifera indica L. cv Ataulfo) Trees by Burkholderia and Rhizobium Inoculation: Morphometric, Biochemical, and Molecular Events

期刊

JOURNAL OF PLANT GROWTH REGULATION
卷 32, 期 3, 页码 615-627

出版社

SPRINGER
DOI: 10.1007/s00344-013-9329-5

关键词

Mango; Carbohydrates quantification; Climate (environmental) conditions; Flowering locus T; Plant growth-promoting rhizobacteria; Microbial inoculation

向作者/读者索取更多资源

Inoculation of mango trees with Burkholderia caribensis XV and Rhizobium sp. XXV led to mango growth promotion (dry biomass increased in root 89 %, stem 34 %, leaves 51 %, and foliar area 53 %), floral fate (floral buds 100 %), and increased number of flowers (100 %). Nitrogen content in leaves was similar in inoculated and noninoculated trees, around 1.4 % (optimal condition for floral induction). The total foliar nitrogen content increased significantly (56 %) when the microbial inoculation treatment was applied. In addition, the initial content of sucrose, glucose, and fructose in leaves was higher in the microbial inoculation treatment trees but decreased during the evaluated period. The sucrose content in the noninoculated trees presented similar dynamics compared to the microbial inoculation treatment trees, but glucose and fructose showed increased values compared to those of the microbial inoculation treatment. FLOWERING LOCUS T (FT) expression profiles normalized to ACTIN showed similar dynamics but different expression levels: RQ values of 0.03 and 0.05 for noninoculated and microbial inoculation treatments, respectively. In addition, FT expression profiles in microbial inoculation, normalized to the noninoculated treatment, showed an increased FT expression dynamic over time (up to RQ = 2.2), although a drastic decrease in the last sampling date, when all trees presented developed panicles and flowers, was observed. This FT upregulation was in accordance with the flowering induction in that treatment. Temperature had an important influence on mango flowering induction, which was observed for a 1-month period (similar to 10 A degrees C at night and 20 A degrees C during the day). Bud growth that occurred during that period generated mixed and floral buds depending on the exposure time to these inductive temperatures, less than 2 weeks and more than 3 weeks, respectively. Data indicate that inoculation of mango trees with plant growth-promoting rhizobacteria (associated with this crop) is a potential alternative way to promote growth and induce flowering in mango, greatly reducing the high economical costs and environmental contamination associated with traditional agricultural practices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据