4.6 Article

KV10.1 opposes activity-dependent increase in Ca2+ influx into the presynaptic terminal of the parallel fibre-Purkinje cell synapse

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 593, 期 1, 页码 181-196

出版社

WILEY
DOI: 10.1113/jphysiol.2014.281600

关键词

-

资金

  1. IMPRS fellowship
  2. GGNB
  3. NIH [1R01DC013048-01]
  4. Japanese Society for the Promotion of Science
  5. Core-to-Core Program A
  6. Advance Research Networks
  7. DFG [EI 342/4-1]

向作者/读者索取更多资源

The voltage-gated potassium channel K(V)10.1 (Eag1) is widely expressed in the mammalian brain, but its physiological function is not yet understood. Previous studies revealed highest expression levels in hippocampus and cerebellum and suggested a synaptic localization of the channel. The distinct activation kinetics of K(V)10.1 indicate a role during repetitive activity of the cell. Here, we confirm the synaptic localization of K(V)10.1 both biochemically and functionally and that the channel is sufficiently fast at physiological temperature to take part in repolarization of the action potential (AP). We studied the role of the channel in cerebellar physiology using patch clamp and two-photon Ca2+ imaging in K(V)10.1-deficient and wild-type mice. The excitability and action potential waveform recorded at granule cell somata was unchanged, while Ca2+ influx into axonal boutons was enhanced in mutants in response to stimulation with three APs, but not after a single AP. Furthermore, mutants exhibited a frequency-dependent increase in facilitation at the parallel fibre-Purkinje cell synapse at high firing rates. We propose that K(V)10.1 acts as a modulator of local AP shape specifically during high-frequency burst firing when other potassium channels suffer cumulative inactivation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据