4.6 Article Proceedings Paper

Functional circuitry of visual adaptation in the retina

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 586, 期 18, 页码 4377-4384

出版社

WILEY-BLACKWELL
DOI: 10.1113/jphysiol.2008.156638

关键词

-

资金

  1. NEI NIH HHS [R01 EY014454, EY14454] Funding Source: Medline

向作者/读者索取更多资源

The visual system continually adjusts its sensitivity, or 'adapts', to the conditions of the immediate environment. Adaptation increases responses when input signals are weak, to improve the signal-to-noise ratio, and decreases responses when input signals are strong, to prevent response saturation. Retinal ganglion cells adapt primarily to two properties of light input: the mean intensity and the variance of intensity over time (contrast). This review focuses on cellular mechanisms for contrast adaptation in mammalian retina. High contrast over the ganglion cell's receptive field centre reduces the gain of spiking responses. The mechanism for gain control arises partly in presynaptic bipolar cell inputs and partly in the process of spike generation. Following strong contrast stimulation, ganglion cells exhibit a prolonged after-hyperpolarization, driven primarily by suppression of glutamate release from presynaptic bipolar cells. Ganglion cells also adapt to high contrast over their peripheral receptive field. Long-range adaptive signals are carried by amacrine cells that inhibit the ganglion cell directly, causing hyperpolarization, and inhibit presynaptic bipolar terminals, reducing gain of their synaptic output. Thus, contrast adaptation in ganglion cells involves multiple synaptic and intrinsic mechanisms for gain control and hyperpolarization. Several forms of adaptation in ganglion cells originate in presynaptic bipolar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据