4.6 Article

Nuclear pore disassembly from endoplasmic reticulum membranes promotes Ca2+ signalling competency

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 586, 期 12, 页码 2873-2888

出版社

WILEY
DOI: 10.1113/jphysiol.2008.153379

关键词

-

资金

  1. NINDS NIH HHS [NS046783, R01 NS046783, R01 NS046783-01A1] Funding Source: Medline

向作者/读者索取更多资源

The functionality of the endoplasmic reticulum (ER) as a Ca2+ storage organelle is supported by families of Ca2+ pumps, buffers and channels that regulate Ca2+ fluxes between the ER lumen and cytosol. Although many studies have identified heterogeneities in Ca2+ fluxes throughout the ER, the question of how differential functionality of Ca2+ channels is regulated within proximal regions of the same organelle is unresolved. Here, we studied the in vivo dynamics of an ER subdomain known as annulate lamellae (AL), a cytoplasmic nucleoporin-containing organelle widely used in vitro to study the mechanics of nuclear envelope breakdown. We show that nuclear pore complexes (NPCs) within AL suppress local Ca2+ signalling activity, an inhibitory influence relieved by heterogeneous dissociation of nucleoporins to yield NPC-denuded ER domains competent at Ca2+ signalling. Consequently, we propose a novel generalized role for AL - reversible attenuation of resident protein activity - such that regulated AL (dis)assembly via a kinase/phosphatase cycle allows cells to support rapid gain/loss-of-function transitions in cellular physiology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据