4.5 Article

Effect of doping on electronic structure and photocatalytic behavior of amorphous TiO2

期刊

JOURNAL OF PHYSICS-CONDENSED MATTER
卷 25, 期 47, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/25/47/475501

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. University of Toronto for providing funding for this research

向作者/读者索取更多资源

Visible light photocatalysts based on doped crystalline forms of titanium dioxide (TiO2) have attracted significant scientific attention in recent decades. Amorphous TiO2, despite many merits over crystalline phases, has not been studied as thoroughly. In this paper, an in-depth analysis of the electronic properties of doped amorphous TiO2 is performed using density functional theory with Hubbard's energy correction (DFT C U). Monodoping with p-type (N) and n-type (Nb) dopants shows appreciable bandgap reduction, but leads to recombination centers due to the presence of uncompensated charges. To resolve this issue, charge compensation via codoping is attempted. The charge compensated codoping not only reduces the bandgap by 0.4 eV but also eliminates the bandgap states present in monodoped systems responsible for charge carrier recombination. Furthermore, the localized tail states present in the aTiO(2) system are eliminated to a large extent which leads to a decrease in the charge recombination and an increase in the charge migration. Thus, appropriate doping of amorphous TiO2 may lead to an alternative route for the development of visible light photocatalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据