4.5 Article

AgGaSe2 thin films grown by chemical close-spaced vapor transport for photovoltaic applications: structural, compositional and optical properties

期刊

JOURNAL OF PHYSICS-CONDENSED MATTER
卷 24, 期 17, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/24/17/175801

关键词

-

资金

  1. Erasmus Mundus External Cooperation Window for Belarus, Moldova and Ukraine

向作者/读者索取更多资源

Thin films of chalcopyrite AgGaSe2 have been successfully grown on glass and glass/molybdenum substrates using the technique of chemical close-spaced vapor transport. The high crystallinity of the samples is confirmed by grazing-incidence x-ray diffraction, scanning and transmission electron microscopy, and optical transmission/reflection spectroscopy. Here, two of the three expected direct optical bandgaps are found at 1.77(2) and 1.88(6) eV at 300 K. The lowest bandgap energy at 4 K is estimated to be 1.82(3) eV. Photoluminescence spectroscopy has further revealed the nature of the point defects within the AgGaSe2, showing evidence for the existence of very shallow acceptor levels of 5(1) and 10(1) meV, and thus suggesting the AgGaSe2 phase itself to exhibit a p-type conductivity. At the same time, electrical characterization by Hall, Seebeck and four-point-probe measurements indicate properties of a compensated semiconductor. The electrical properties of the investigated thin films are mainly influenced by the presence of Ag2Se and Ga2O3 nanometer-scaled surface layers, as well as by Ag2Se inclusions in the bulk and Ag clusters at the layers' rear side.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据