4.5 Article

Use of tunable nanopore blockade rates to investigate colloidal dispersions

期刊

JOURNAL OF PHYSICS-CONDENSED MATTER
卷 22, 期 45, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/22/45/454116

关键词

-

资金

  1. Australia New Zealand Biotechnology Partnership Fund
  2. New Zealand's Foundation for Research, Science and Technology

向作者/读者索取更多资源

Tunable nanopores fabricated in elastomeric membranes have been used to study the dependence of ionic current blockade rate on the concentration and electrophoretic mobility of particles in aqueous suspensions. A range of nanoparticle sizes, materials and surface functionalities has been tested. Using pressure-driven flow through a pore, the blockade rate for 100 nm carboxylated polystyrene particles was found to be linearly proportional to both transmembrane pressure (between 0 and 1.8 kPa) and particle concentration (between 7 x 10(8) and 4.5 x 10(10) ml(-1)). This result can be accurately modelled using Nernst-Planck transport theory, enabling measurement of particle concentrations. Using only an applied potential across a pore, the blockade rates for carboxylic acid and amine coated 500 and 200 nm silica particles were found to correspond to changes in their mobility as a function of the solution pH. Scanning electron microscopy and confocal microscopy have been used to visualize changes in the tunable nanopore geometry in three dimensions as a function of applied mechanical strain. The pores were conical in shape, and changes in pore size were consistent with ionic current measurements. A zone of inelastic deformation adjacent to the pore has been identified as important in the tuning process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据