4.5 Review

Ripple formation on silicon by medium energy ion bombardment

期刊

JOURNAL OF PHYSICS-CONDENSED MATTER
卷 21, 期 22, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/21/22/224004

关键词

-

向作者/读者索取更多资源

The formation of a self-organized nanoscale ripple pattern after off-normally incident ion bombardment on the surface of amorphous materials, or on semiconductors like silicon that are easily amorphized by ion bombardment, has attracted much attention in recent years from the point of view of both theory and applications. As the energy of the impinging ions increases from low to medium, i.e. several hundred eV to a few tens of keV, the ratio of amplitude to wavelength of the generated ripple pattern becomes so large that inter-peak shadowing of the incident ion flux takes place. Morphologically, the sinusoidal surface profile starts to become distorted after prolonged ion bombardment under such conditions. Structural and compositional modifications of the ripple morphology generated under shadowing conditions include the formation of a thicker amorphous layer with high incorporation of argon atoms in the form of nanometer sized bubbles around the middle part of the front slope of the ripple facing the ion beam, as compared to the rear slope. The present paper reviews recent developments in the experimental study of morphological, structural and compositional aspects of ripple patterns generated on a silicon surface after medium keV (30-120 keV) argon bombardment mainly at an angle of ion incidence of 60 degrees.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据