4.6 Article

High-speed three-dimensional plasma temperature determination of axially symmetric free-burning arcs

期刊

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0022-3727/46/12/125203

关键词

-

资金

  1. DFG [SCHE 428/7-1, SCHE 428/8-1, WE 4416/1-1, UH 106/3-1]

向作者/读者索取更多资源

In this paper we introduce an experimental technique that allows for high-speed, three-dimensional determination of electron density and temperature in axially symmetric free-burning arcs. Optical filters with narrow spectral bands of 487.5-488.5 nm and 689-699 nm are utilized to gain two-dimensional spectral information of a free-burning argon tungsten inert gas arc. A setup of mirrors allows one to image identical arc sections of the two spectral bands onto a single camera chip. Two-different Abel inversion algorithms have been developed to reconstruct the original radial distribution of emission coefficients detected with each spectral window and to confirm the results. With the assumption of local thermodynamic equilibrium we calculate emission coefficients as a function of temperature by application of the Saha equation, the ideal gas law, the quasineutral gas condition and the NIST compilation of spectral lines. Ratios of calculated emission coefficients are compared with measured ones yielding local plasma temperatures. In the case of axial symmetry the three-dimensional plasma temperature distributions have been determined at dc currents of 100, 125, 150 and 200 A yielding temperatures up to 20000 K in the hot cathode region. These measurements have been validated by four different techniques utilizing a high-resolution spectrometer at different positions in the plasma. Plasma temperatures show good agreement throughout the different methods. Additionally spatially resolved transient plasma temperatures have been measured of a dc pulsed process employing a high-speed frame rate of 33000 frames per second showing the modulation of the arc isothermals with time and providing information about the sensitivity of the experimental approach.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据