4.2 Article

Prospects of reaching the quantum regime in Li-Yb+ mixtures

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1361-6455/aadd7d

关键词

trapped ions; ultracold atoms; atom-ion collisions

资金

  1. EU via the ERC [337638]
  2. Netherlands Organization for Scientific Research (NWO) [680-47-538, 740.018.008]

向作者/读者索取更多资源

We perform numerical simulations of trapped Yb-171(+) ions that are buffer gas cooled by a cold cloud of Li-6 atoms. This species combination has been suggested to be the most promising for reaching the quantum regime of interacting atoms and ions in a Paul trap. Treating the atoms and ions classically, we compute that the collision energy indeed reaches below the quantum limit for a perfect linear Paul trap. We analyze the effect of imperfections in the ion trap that cause excess micromotion. We find that the suppression of excess micromotion required to reach the quantum limit should be within experimental reach. Indeed, although the requirements are strong, they are not excessive and lie within reported values in the literature. We analyze the detection and suppression of excess micromotion in our experimental setup. Using the obtained experimental parameters in our simulation, we calculate collision energies that are a factor 2-11 larger than the quantum limit, indicating that improvements in micromotion detection and compensation are needed there. We also analyze the buffer-gas cooling of linear and two-dimensional ion crystals. We find that the energy stored in the eigenmodes of ion motion may reach 10-100 mu K after buffer-gas cooling under realistic experimental circumstances. Interestingly, not all eigenmodes are buffer-gas cooled to the same energy. Our results show that with modest improvements of our experiment, studying atom-ion mixtures in the quantum regime is in reach, allowing for buffer-gas cooling of the trapped ion quantum platform and to study the occurrence of atom-ion Feshbach resonances.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据