4.5 Article

Microwave bonding of poly(methylmethacrylate) microfluidic devices using a conductive polymer

期刊

JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS
卷 72, 期 6, 页码 626-629

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jpcs.2011.02.005

关键词

-

向作者/读者索取更多资源

Component binding within microfluidic devices is a problem that has long been seeking a solution. In this investigation, the use of microwave radiation to seal PMMA components has been investigated using polyaniline as an absorber that is capable of inducting interfacial bonding. Straight microchannels were machined into PMMA using a Datron CAT3DM6 CNC machine with widths and depths across a range of 100-1000 mu m. Prototype fluidic devices were prepared with channel patterns utilizing varying feature sizes, bends and flow profiling to demonstrate the application of the technique to real microfluidic devices. Experimental data illustrated the successful bonding of channels in the range stated previously and bonding (tensile) strength was assessed via pull tests on bonded PMMA using an Engstrom Zwick 100 tensile testing system (Engstrom Ltd, US). Coherent, defect free seals were attained with breakage tests requiring an excess of 1 kN force. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据