4.6 Article

Watching Iron Nanoparticles Rust: An in Situ X-ray Absorption Spectroscopic Study

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 118, 期 38, 页码 22317-22324

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp506281d

关键词

-

资金

  1. National Sciences and Engineering Research Council of Canada (NSERC)
  2. Natural Sciences and Engineering Research Council of Canada
  3. National Research Council Canada
  4. Canadian Institutes of Health Research
  5. Province of Saskatchewan
  6. Western Economic Diversification Canada
  7. University of Saskatchewan

向作者/读者索取更多资源

Iron nanoparticles and iron oxide nanoparticles are among the most commonly studied nanomaterials because of their applications in fields ranging from catalysis to ferrofluids. However, many synthetic methods give iron nanoparticles with large size distributions, and it is difficult to follow the kinetics of iron nanoparticle oxidation reactions and the relative speciation of iron oxidation states in real time. Herein, we introduce a simple approach of controlling the sizes of Fe@FexOy nanoparticles and a novel method for following Fe@FexOy nanoparticle oxidation in situ in liquid solutions by Fe K- and L-edge X-ray absorption near-edge structure (XANES) spectroscopy. XANES results show that these Fe@FexOy nanoparticles have similar XANES spectra before exposure to air. In situ XANES measurements allow for quantitative oxidation kinetics of different nanoparticle sizes to be followed; results show that the rate of Fe(0) oxidation increases with a decrease in average nanoparticle size. However, the rate of Fe core size depletion was found to be ca. 0.02 nm/min for all the nanoparticle systems studied. This suggests similar oxidation mechanisms are at work for all the particle sizes studied. This work shows that in situ liquid cell XANES can be used to follow oxidation state and coordination environment changes in Fe NP dispersions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据