4.6 Article

Conductive PEDOT Covalently Bound to Transparent FTO Electrodes

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 118, 期 30, 页码 16782-16790

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp412758g

关键词

-

资金

  1. PRIN
  2. Dyepower Consortium

向作者/读者索取更多资源

A new 3,4-ethylenedioxythiophene (EDOT) monomer derivatized with aminopropyl-triethoxysilane (APTES-EDOT) was prepared via a simple two step reaction in high yield. The new monomer can be firmly grafted to the fluorine-tin-oxide (FTO) conductive glass, where the irreversible electro-oxidation of surface bound APTES-EDOT, in the presence of unsubstituted EDOT monomers in solution, triggers the cationic polymerization of EDOT, resulting in the incorporation of PEDOT chains into APTES-EDOT. As a result, the modified PEDOT film (Si-PEDOT) is covalently bound to the FTO surface and easily withstands mechanical stresses that are critical for the adhesion of regular PEDOT. When tested with Co(III)/(II) redox shuttles, electrodeposited Si-PEDOT films showed decreased charge transfer and mass transport resistances with respect to both platinum and conventional PEDOT films, leading to enhanced relative efficiencies (approximate to 10%) when employed as counter electrode in transparent dye sensitized solar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据