4.6 Article

Direct Electrical Evidence of Plasmonic Near-Field Enhancement in Small Molecule Organic Solar Cells

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 118, 期 28, 页码 15128-15135

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp5025087

关键词

-

资金

  1. DFG [SPP1355]

向作者/读者索取更多资源

We present a simple and versatile technique to introduce plasmonic silver nanoparticles into organic thin film devices by in situ vacuum deposition. Silver particles with 80 nm diameter at the back of small molecule organic solar cells increase the power conversion efficiency (PCE). Doped organic transport layers allow one to separate electrical and optical effects. By a systematic variation of the position of the silver particles within the solar cell stack, we can thus clearly distinguish a near-field photocurrent gain in the IR that decays to one-half on length scales of around 4 nm, and a less distance-dependent selective mirror effect for short wavelength, which allows one to optimize devices for different wavelengths simultaneously. Device optimization reveals that plasmonic increased absorption can be used to significantly reduce the thickness of the absorber layers and gain efficiency through improved transport properties. A plasmonic zinc phthalocyanine fullerene-C-60 solar cell that yields improved photocurrent, fill factor, and PCE of 2.6% includes one-half of the absorber material of an optimized reference device with PCE of 2.4%. The design priciples for plasmonic solar cells are general and were confirmed in thin devices containing zinc 1,8,15,22-tetrafluoro-phthalocyanine, improving the PCE from 2.7% to 3.4%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据