4.6 Article

Size-Dependent Charge Transfer Yields in Conjugated Polymer/Quantum Dot Blends

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 118, 期 11, 页码 5710-5715

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp412545q

关键词

-

资金

  1. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Material Sciences [DE-FG02-07ER46467]
  2. JNC Corp.
  3. Portuguese Foundation for Science and Technology (FCT) [SFRH/BPD/71816/2010]
  4. National Science Foundation SEES fellowship [DMA-1215753]
  5. Direct For Mathematical & Physical Scien
  6. Division Of Materials Research [1215753] Funding Source: National Science Foundation

向作者/读者索取更多资源

We investigate the effect of quantum dot size on photocurrent and photoinduced charge transfer yields in blends of the conjugated polymer, poly((4,8-bis(octyloxy)benzo(1,2-b:4,5-b')dithiophene-2,6-diyl)(2-((dodecyloxy)carbonyl)thieno(3,4-b)thiophenediyl)) (PTB1), with PbS nanocrystal quantum dots (QDs). These hybrid solar cells exhibit external quantum efficiencies of over 70% and power conversion efficiencies of up to 2.8%. We use photoinduced absorption (PIA) spectroscopy and device EQE measurements to probe long-lived charge transfer at the polymer/QD interface as a function of QD size. We observe that both the PIA signal associated with charge formation on the polymer, as well as the external quantum efficiency of the hybrid photovoltaic devices decrease in magnitude with increasing quantum dot size, despite the broader absorption spectrum of the larger dots. We interpret these results as evidence that PTB1/PbS blends behave at least partially as bulk heterojunction (BHJ) solar cells, and conclude that the long-lived charge transfer yield is diminished at larger dot sizes as the energy level offset at the polymer/quantum dot interface is changed through decreasing quantum confinement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据