4.6 Article

Heterogeneous Gas-Phase Synthesis and Molecular Dynamics Modeling of Janus and Core-Satellite Si-Ag Nanoparticles

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 118, 期 25, 页码 13869-13875

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp500684y

关键词

-

向作者/读者索取更多资源

Heterogeneous gas-phase condensation is a promising method of producing hybrid multifunctional nanoparticles with tailored composition and microstructure but also intrinsically introduces greater complexity to the nucleation process and growth kinetics. Herein, we report on the synthesis and growth modeling of silicon-silver (Si-Ag) hybrid nanoparticles using gas-aggregated cosputtering from elemental Si and Ag source targets. The final Si-Ag ensemble size was manipulated in the range 5-15 nm by appropriate tuning of the deposition parameters, while variations in the Si-Ag sputtering power ratio, from 1.8 to 2.25, allowed distinctive Janus and core satellite structures, respectively, to be produced. Molecular dynamics simulations indicate that the individual species first form independent clusters of Si and Ag without significant intermixing. Collisions between unlike species are unstable in the early stages of growth (<100 ns), with large temperature differences resulting in rapid energy exchange and separation. Upon further cooling and depletion of isolated Si and Ag atoms through collection by parent clusters (>100 ns), Si-Ag cluster collisions ultimately result in stable hybrid structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据