4.6 Article

Molecular Dynamics Simulations of Water Structure and Diffusion in Silica Nanopores

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 116, 期 21, 页码 11556-11564

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp301299a

关键词

-

资金

  1. Nuclear Energy Advanced Modeling and Simulation (NEAMS)
  2. U.S. Department of Energy, Office of Nuclear Energy [DE-AC02-05CH11231]

向作者/读者索取更多资源

We present molecular dynamics (MD) simulations of water-filled silica nanopores such as those that occur in ordered oxide ceramics (MCM-41, SBA-15), controlled pore glasses (such as Vycor glass), mesoporous silica, bio-glasses, and hydrous silica gel coatings of weathered minerals and glasses. Our simulations overlap the range of pore diameters (1-4 nm) where confinement causes the disappearance of bulk-liquid-like water. In >= 2 nm diameter pores, the silica surface carries three statistical monolayers of density-layered water, interfacial water structure is independent of confinement or surface curvature, and bulk-liquid-like water exists at the center of the pore (this last finding contradicts assumptions used in most previous neutron diffraction studies and in several MD simulation studies of silica nanopores). In 1 nm diameter pores, bulk-liquid-like water does not exist and the structural properties of interfacial water are influenced by confinement. Predicted water diffusion coefficients in 1-4 nm diameter pores agree with quasi-elastic neutron scattering (QENS) data and are roughly consistent with a very simple core-shell conceptual model whereupon the first statistical water monolayer is immobile and the rest of the pore water diffuses as rapidly as bulk liquid water.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据