4.7 Article

Probing the existence of phase transitions in one-dimensional fluids of penetrable particles

期刊

PHYSICAL REVIEW E
卷 92, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.92.022138

关键词

-

向作者/读者索取更多资源

Phase transitions in one-dimensional classical fluids are usually ruled out by using van Hove's theorem. A way to circumvent the conclusions of the theorem is to consider an interparticle potential that is everywhere bounded. Such is the case of, e.g., the generalized exponential model of index 4 (GEM-4 potential), which in three dimensions gives a reasonable description of the effective repulsion between flexible dendrimers in a solution. An extensive Monte Carlo simulation of the one-dimensional GEM-4 model [S. Prestipino, Phys. Rev. E 90, 042306 (2014)] has recently provided evidence of an infinite sequence of low-temperature cluster phases, however, also suggesting that upon pushing the simulation forward what seemed a true transition may eventually prove to be only a sharp crossover. We hereby investigate this problem theoretically by use of three different and increasingly sophisticated approaches (i.e., a mean-field theory, the transfer matrix of a lattice model of clusters, and the exact treatment of a system of point clusters in the continuum) to conclude that the alleged transitions of the one-dimensional GEM-4 system are likely just crossovers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据