4.6 Article

Pb(II) Adsorption on Isostructural Hydrated Alumina and Hematite (0001) Surfaces: A DFT Study

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 113, 期 6, 页码 2159-2170

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp807321e

关键词

-

资金

  1. NSF [CBET-0404400, CHE-0431425]

向作者/读者索取更多资源

The persistence of lead.(Pb) in contaminated topsoil is ranked as one of the most serious environmental issues in the U.S. and other countries. Adsorption of Pb at the aqueous interface of nanoscale metal oxide and metal (oxy)hydroxide particles is perhaps the most significant process responsible for controlling contaminant sequestration and mobility, but the process is poorly understood at the molecular level. Experimental studies of absorption of Pb onto bulk minerals have indicated significant differences in reactivity, but the molecular basis for these differences has remained elusive due to the challenges of observing and modeling the complex chemistry that exists at the water-oxide interface. In this work, we present a detailed ab initio theoretical investigation aimed at understanding the fundamental physical and chemical characteristics of Pb adsorption onto the (0001) surface of two common minerals, alpha-Al2O3 and alpha-Fe2O3. The results of our periodic density functional theory (DFT) calculations show that the adsorption energy of Pb(II) on hematite is more than four times the value on isostructural alumina with the same fully hydroxylated surface stoichiometry due to bonding interactions enabled by the partially occupied Fe d-band. Site preference for Pb(II) adsorption on alumina is shown to depend strongly on the cost to disrupt highly stable hydrogen bonding networks on the hydrated surface, but is less of a factor for the stronger Pb-hematite interaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据