4.6 Article

A Predictive Model of Hydrogen Sorption for Metal-Organic Materials

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 113, 期 21, 页码 9316-9320

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp901988e

关键词

-

向作者/读者索取更多资源

Newly developed hydrogen and MOM (Metal-Organic Materials) potential energy functions for molecular simulation are presented. They are designed to be highly transferable while still describing sorbate-MOM interactions with predictive accuracy. Specifically, they are shown to quantitatively describe hydrogen sorption, including isosteric heats, in MOF-5 over the broad temperature and pressure ranges that have been examined experimentally. The approach that is adopted is general and demonstrates that highly accurate and predictive models of molecular interaction with MOMs are quite feasible. Molecular interactions giving rise to the isosteric heat have been characterized and validated against the experimentally relevant data. Finally, inspection of the isothermal compressibility of hydrogen in MOF-5 reveals that under saturating high-pressure conditions (even at temperatures well above the neat boiling point) the state of hydrogen is characteristic of a liquid, i.e., with a compressibility similar to that of bulk hydrogen. This result is of particular relevance in developing MOMs for hydrogen-storage applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据