4.6 Article

Spatial Tuning of the Metal Work Function by Means of Alkanethiol and Fluorinated Alkanethiol Gradients

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 113, 期 14, 页码 5620-5628

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp809156a

关键词

-

向作者/读者索取更多资源

Surface-chemical gradients composed of self-assembled monolayers (SAM) of decanethiol (DT) and a partially fluorinated decanethiol (PFDT) on gold, exhibiting gradual changes in surface concentration of one or both components, have been prepared by a simple, controlled-immersion process. Infrared spectroscopic studies on a single-component PFDT gradient indicate a change in average molecular orientation with increasing surface coverage, whereas on a two-component gradient, the orientation remains invariant over the entire length of the gradient. X-ray photoelectron spectroscopic measurements on a single-component PFDT gradient show a systematic decrease in the fluorine (F 1s) binding energy with increasing surface coverage, whereas a single-component DT gradient shows an increase in the carbon (C 1s) binding energy. In two-component (DT-PFDT) gradients, the molar ratios of the two components at any particular location on the sample surface determine the magnitude of the binding-energy shifts at that location. Such shifts, which are on the order of 1 eV. are shown to be a consequence of work-function changes in the underlying gold upon SAM formation. These results are discussed in light of the surface-potential measurements on a DT-PFDT gradient by Kelvin Probe Force Microscopy and XP spectra acquired on floating and grounded samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据