4.6 Article

Gold nanoparticle/organic networks as chemiresistor coatings: The effect of film morphology on vapor sensitivity

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 112, 期 32, 页码 12507-12514

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp8013546

关键词

-

向作者/读者索取更多资源

Networked films comprising gold nanoparticles (4 nm core diameter) and dodecanedithiol were deposited via layer-by-layer self-assembly. The film thickness was controlled by the number of deposition cycles and ranged from submonolayer to multilayer coverage with up to 60 nm thickness. FE-SEM and XPS revealed island growth during the first four to five deposition cycles. At room temperature, films based on islands showed slightly nonlinear current-voltage curves, whereas thicker films gave Ohmic behavior. Between 100 and 300 K, the temperature dependence of conductance was consistent with an Arrhenius model for activated charge transport. The chemical sensitivity of the films was characterized by dosing them with vapors of toluene, 4-methyl-2-pentanone, 1-propanol, and water while monitoring their relative differential resistances. Thin films responded with a decrease in the resistance, whereas thicker films responded with a resistance increase. The results indicate that swelling along the film normal may be important for the underlying sensing mechanism of homogeneous multilayer films. Changes in permittivity and/or swelling-induced decrease of the interisland distance can be responsible for the observed decrease in resistance of the thinner films.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据